首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The coiled coil is a ubiquitous protein-folding motif. It generally is accepted that coiled coils are characterized by sequence patterns known as heptad repeats. Such patterns direct the formation and assembly of amphipathic alpha-helices, the hydrophobic faces of which interface in a specific manner first proposed by Crick and termed "knobs-into-holes packing". We developed software, SOCKET, to recognize this packing in protein structures. As expected, in a trawl of the protein data bank, we found examples of canonical coiled coils with a single contiguous heptad repeat. In addition, we identified structures with multiple, overlapping heptad repeats. This observation extends Crick's original postulate: Multiple, offset heptad repeats help explain assemblies with more than two helices. Indeed, we have found that the sequence offset of the multiple heptad repeats is related to the coiled-coil oligomer state. Here we focus on one particular sequence motif in which two heptad repeats are offset by two residues. This offset sets up two hydrophobic faces separated by approximately 150 degrees -160 degrees around the alpha-helix. In turn, two different combinations of these faces are possible. Either similar or opposite faces can interface, which leads to open or closed multihelix assemblies. Accordingly, we refer to these two forms as alpha-sheets and alpha-cylinders. We illustrate these structures with our own predictions and by reference to natural variants on these designs that have recently come to light.  相似文献   

3.
4.
Sia SK  Kim PS 《Biochemistry》2001,40(30):8981-8989
A common motif in protein structures is the assembly of alpha-helices. Natural alpha-helical assemblies, such as helical bundles and coiled coils, consist of multiple right-handed alpha-helices. Here we design a protein complex containing both left-handed and right-handed helices, with peptides of D- and L-amino acids, respectively. The two peptides, D-Acid and L-Base, feature hydrophobic heptad repeats and are designed to pack against each other in a "knobs-into-holes" manner. In solution, the peptides form a stable, helical heterotetramer with tight packing in the most solvent-protected core. This motif may be useful for designing protease-resistant, helical D-peptide ligands against biological protein targets.  相似文献   

5.
Membrane-embedded protein domains frequently exist as α-helical bundles, as exemplified by photosynthetic reaction centers, bacteriorhodopsin, and cytochrome C oxidase. The sidechain packing between their transmembrane helices was investigated by a nearest-neighbor analysis which identified sets of interfacial residues for each analyzed helix–helix interface. For the left-handed helix–helix pairs, the interfacial residues almost exclusively occupy positions a, d, e, or g within a heptad motif (abcdefg) which is repeated two to three times for each interacting helical surface. The connectivity between the interfacial residues of adjacent helices conforms to the knobs-into-holes type of sidechain packing known from soluble coiled coils. These results demonstrate on a quantitative basis that the geometry of sidechain packing is similar for left-handed helix–helix pairs embedded in membranes and coiled coils of soluble proteins. The transmembrane helix–helix interfaces studied are somewhat less compact and regular as compared to soluble coiled coils and tolerate all hydrophobic amino acid types to similar degrees. The results are discussed with respect to previous experimental findings which demonstrate that specific interactions between transmembrane helices are important for membrane protein folding and/or oligomerization. Proteins 31:150–159, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Liu J  Zheng Q  Deng Y  Li Q  Kallenbach NR  Lu M 《Biochemistry》2007,46(51):14951-14959
Predictive understanding of how the folded, functional shape of a native protein is encoded in the linear sequence of its amino acid residues remains an unsolved challenge in modern structural biology. Antiparallel four-stranded coiled coils are relatively simple protein structures that embody a heptad sequence repeat and rich diversity for tertiary packing of alpha-helices. To explore specific sequence determinants of the lac repressor coiled-coil tetramerization domain, we have engineered a set of buried nonpolar side chains at the a-, d-, and e-positions into the hydrophobic interior of the dimeric GCN4 leucine zipper. Circular dichroism and equilibrium ultracentrifugation studies show that this core variant (GCN4-pAeLV) forms a stable tetrameric structure with a reversible and highly cooperative thermal unfolding transition. The X-ray crystal structure at 1.9 A reveals that GCN4-pAeLV is an antiparallel four-stranded coiled coil of the lac repressor type in which the a, d, and e side chains associate by means of combined knobs-against-knobs and knobs-into-holes packing with a characteristic interhelical offset of 0.25 heptad. Comparison of the side chain shape and packing in the antiparallel tetramers shows that the burial of alanine residues at the e positions between the neighboring helices of GCN4-pAeLV dictates both the antiparallel orientation and helix offset. This study fills in a gap in our knowledge of the determinants of structural specificity in antiparallel coiled coils and improves our understanding of how specific side chain packing forms the teritiary structure of a functional protein.  相似文献   

7.
The high resolution X-ray structure of the Sendai virus oligomerization domain reveals a homotetrameric coiled coil structure with many details that are different from classic coiled coils with canonical hydrophobic heptad repeats. Alternatives to the classic knobs-into-holes packing lead to differences in supercoil pitch and diameter that allow water molecules inside the core. This open and more hydrophilic structure does not seem to be destabilized by mutations that would be expected to disrupt classic coiled coils.  相似文献   

8.
Electrostatic interactions are often critical for determining the specificity of protein-protein complexes. To study the role of electrostatic interactions for assembly of helical bundles, we previously designed a thermostable, heterotrimeric coiled coil, ABC, in which charged residues were employed to drive preferential association of three distinct, 34-residue helices. To investigate the basis for heterotrimer specificity, we have used multiwavelength anomalous diffraction (MAD) analysis to determine the 1.8 A resolution crystal structure of ABC. The structure shows that ABC forms a heterotrimeric coiled coil with the intended arrangement of parallel chains. Over half of the ion pairs engineered to restrict helix associations were apparent in the experimental electron density map. As seen in other trimeric coiled coils, ABC displays acute knobs-into-holes packing and a buried anion coordinated by core polar amino acids. These interactions validate the design strategy and illustrate how packing and polar contacts determine structural uniqueness.  相似文献   

9.
Coiled coils serve as dimerization domains for a wide variety of proteins, including the medically important oligomeric tumor suppressor protein, APC. Mutations in the APC gene are associated with an inherited susceptibility to colon cancer and with approximately 75 % of sporadic colorectal tumors. To define the basis for APC pairing and to explore the anatomy of dimeric coiled coils, we determined the 2.4 A resolution X-ray crystal structure of the N-terminal dimerization domain of APC. The peptide APC-55, encompassing the heptad repeats in APC residues 2-55, primarily forms an alpha-helical, coiled-coil dimer with newly observed core packing features. Correlated asymmetric packing of four core residues in distinct, standard rotamers is associated with a small shift in the helix register. At the C terminus, the helices splay apart and interact with a symmetry-related dimer in the crystal to form a short, anti-parallel, four-helix bundle. N-terminal fraying and C-terminal splaying of the helices, as well as the asymmetry and helix register shift describe unprecedented dynamic excursions of coiled coils. The low stability of APC-55 and divergence from the expected coiled-coil fold support the suggestion that the APC dimerization domain may extend beyond the first 55 residues.  相似文献   

10.
The Alacoil is an antiparallel (rather than the usual parallel) coiled-coil of α-helices with Ala or another small residue in every seventh position, allowing a very close spacing of the helices (7.5–8.5 Å between local helix axes), often over four or five helical turns. It occurs in two distinct types that differ by which position of the heptad repeat is occupied by Ala and by whether the closest points on the backbone of the two helices are aligned or are offset by half a turn. The aligned, or ROP, type has Ala in position “d” of the heptad repeat, which occupies the “tip-to-tip” side of the helix contact where the Cα–Cβ bonds point toward each other. The more common offset, or ferritin, type of Alacoil has Ala in position “a” of the heptad repeat (where the Cα-Cβ bonds lie back-to-back, on the “knuckle-touch” side of the helix contact), and the backbones of the two helices are offset vertically by half a turn. In both forms, successive layers of contact have the Ala first on one and then on the other helix. The Alacoil structure has much in common with the coiled-coils of fibrous proteins or leucine zippers: both are α-helical coiled-coils, with a critical amino acid repeated every seven residues (the Leu or the Ala) and a secondary contact position in between. However, Leu zippers are between aligned, parallel helices (often identical, in dimers), whereas Alacoils are between antiparallel helices, usually offset, and much closer together. The Alacoil, then, could be considered as an “Ala anti-zipper.” Leu zippers have a classic “knobs-into-holes” packing of the Leu side chain into a diamond of four residues on the opposite helix; for Alacoils, the helices are so close together that the Ala methyl group must choose one side of the diamond and pack inside a triangle of residues on the other helix. We have used the ferritin-type Alacoil as the basis for the de novo design of a 66-residue, coiled helix hairpin called “Alacoilin.” Its sequence is: cmSP DQWDKE A AQYDAHA QE FEKKS HRNng TPEA DQYRHM A SQY QAMA QK LKAIA NQLKK Gseter (with “a” heptad positions underlined and nonhelical parts in lowercase), which we will produce and test for both stability and uniqueness of structure.  相似文献   

11.
Alpha-helical coiled coils play a crucial role in mediating specific protein-protein interactions. However, the rules and mechanisms that govern helix-helix association in coiled coils remain incompletely understood. Here we have engineered a seven heptad "Phe-zipper" protein (Phe-14) with phenylalanine residues at all 14 hydrophobic a and d positions, and generated a further variant (Phe-14(M)) in which a single core Phe residue is substituted with Met. Phe-14 forms a discrete alpha-helical pentamer in aqueous solution, while Phe-14(M) folds into a tetrameric helical structure. X-ray crystal structures reveal that in both the tetramer and the pentamer the a and d side-chains interlock in a classical knobs-into-holes packing to produce parallel coiled-coil structures enclosing large tubular cavities. However, the presence of the Met residue in the apolar interface of the tetramer markedly alters its local coiled-coil conformation and superhelical geometry. Thus, short-range interactions involving the Met side-chain serve to preferentially select for tetramer formation, either by inhibiting a nucleation step essential for pentamer folding or by abrogating an intermediate required to form the pentamer. Although specific trigger sequences have not been clearly identified in dimeric coiled coils, higher-order coiled coils, as well as other oligomeric multi-protein complexes, may require such sequences to nucleate and direct their assembly.  相似文献   

12.
In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled helices (‘coiled coils’) for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains (‘knobs-into-holes’), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the ‘heptad repeat’ essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode (‘knobs-to-knobs’) to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.  相似文献   

13.
Lee HS  Choi J  Yoon S 《The protein journal》2007,26(8):556-561
Knowledge about the assembled structures of the secondary elements in proteins is essential to understanding protein folding and functionality. In particular, the analysis of helix geometry is required to study helix packing with the rest of the protein and formation of super secondary structures, such as, coiled coils and helix bundles, formed by packing of two or more helices. Here we present an improved computational method, QHELIX, for the calculation of the orientation angles between helices. Since a large number of helices are known to be in curved shapes, an appropriate definition of helical axes is a prerequisite for calculating the orientation angle between helices. The present method provides a quantitative measure on the irregularity of helical shape, resulting in discriminating irregular-shaped helices from helices with an ideal geometry in a large-scale analysis of helix geometry. It is also capable of straightforwardly assigning the direction of orientation angles in a consistent way. These improvements will find applications in finding a new insight on the assembly of protein secondary structure. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
E M Goodman  P S Kim 《Biochemistry》1991,30(50):11615-11620
The two-stranded coiled-coil motif, which includes leucine zippers, is a simple protein structure that is well suited for studies of helix-helix interactions. The interaction between helices in a coiled coil involves packing of "knobs" into "holes", as predicted by Crick in 1953 and confirmed recently by X-ray crystallography for the GCN4 leucine zipper [O'Shea, E.K., Klemm, J.D., Kim, P.S., & Alber, T. (1991) Science 254, 539]. A striking periodicity, extending over six helical turns, is observed in the rates of hydrogen-deuterium exchange for amide protons in a peptide corresponding to the leucine zipper of GCN4. Protons at the hydrophobic interface show the most protection from exchange. The NMR chemical shifts of amide protons in the helices also show a pronounced periodicity which predicts a short H-bond followed by a long H-bond every seven residues. This variation was anticipated in 1953 by Pauling and is sufficient to give rise to a local left-handed superhelical twist characteristic of coiled coils. The amide protons that lie at the base of the "hole" in the "knobs-into-holes" packing show slow amide proton exchange rates and are predicted to have short H-bond lengths. These results suggest that tertiary interactions can lead to highly localized, but substantial, differences in stability and dynamics within a secondary structure element and emphasize the dominant nature of packing interactions in determining protein structure.  相似文献   

15.
Because the space of folded protein structures is highly degenerate, with recurring secondary and tertiary motifs, methods for representing protein structure in terms of collective physically relevant coordinates are of great interest. By collapsing structural diversity to a handful of parameters, such methods can be used to delineate the space of designable structures (i.e., conformations that can be stabilized with a large number of sequences)—a crucial task for de novo protein design. We first demonstrate this on natural α-helical coiled coils using the Crick parameterization. We show that over 95% of known coiled-coil structures are within  1-Å Cα root mean square deviation of a Crick-ideal backbone. Derived parameters show that natural geometric space of coiled coils is highly restricted and can be represented by “allowed” conformations amidst a potential continuum of conformers. Allowed structures have (1) restricted axial offsets between helices, which differ starkly between parallel and anti-parallel structures; (2) preferred superhelical radii, which depend linearly on the oligomerization state; (3) pronounced radius-dependent a- and d-position amino acid propensities; and (4) discrete angles of rotation of helices about their axes, which are surprisingly independent of oligomerization state or orientation. In all, we estimate the space of designable coiled-coil structures to be reduced at least 160-fold relative to the space of geometrically feasible structures. To extend the benefits of structural parameterization to other systems, we developed a general mathematical framework for parameterizing arbitrary helical structures, which reduces to the Crick parameterization as a special case. The method is successfully validated on a set of non-coiled-coil helical bundles, frequent in channels and transporter proteins, which show significant helix bending but not supercoiling. Programs for coiled-coil parameter fitting and structure generation are provided via a web interface at http://www.gevorggrigoryan.com/cccp/, and code for generalized helical parameterization is available upon request.  相似文献   

16.
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.  相似文献   

17.
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.  相似文献   

18.
The yeast DNA-binding protein GCN4 forms a homo-dimer through a self-complementary coiled-coil interface. In this article, we describe how such coiled-coils might be bistable and, through Molecular Dynamics computations on the GCN4 coiled coil, we show that the coiled coil can indeed switch between the two states by a pathway in which there is a progressive "flipping" of consecutive steps along the interface. We discuss the general implications of potentially bistable coiled-coil interfaces for allosteric signal-transmission mechanisms along homo-dimeric coiled coils and for the packing of helices in globular proteins.  相似文献   

19.
Coiled coils are protein structure domains with two or more α-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a “periodic table of coiled coils,” which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of α-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.  相似文献   

20.
Subunit oligomerization of many proteins is mediated by α-helical coiled-coil domains. 3,4-Hydrophobic heptad repeat sequences, the characteristic feature of the coiled-coil protein folding motif, have been found in a wide variety of gene products including cytoskeletal, nuclear, muscle, cell surface, extracellular, plasma, bacterial, and viral proteins. Whereas the majority of coiled-coil structures is represented by intracellular α-helical bundles that contain two polypeptide chains, examples of extracellular coiled-coil proteins are fewer in number. Most proteins located in the extracellular space form three-stranded α-helical assemblies. Recently, five-stranded coiled coils have been identified in thrombospondins 3 and 4 in cartilage oligomeric matrix protein, and the formation of a heterotetramer has been observed in in vitro studies with the recombinant asialoglycoprotein receptor oligomerization domain. Coiled-coil domains in laminins and probably also in tenascins and thrombospondins are responsible for the formation of tissue-specific isoforms by selective oligomerization of different polypeptide chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号