首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen  Xiaojuan  Wen  Rui  Zhang  Lisheng  Lahiri  Abhishek  Wang  Peijie  Fang  Yan 《Plasmonics (Norwell, Mass.)》2014,9(4):945-949

In this paper, we highlight the formation of Ag/Au core-shell nanoparticles at room temperature by using a low-power laser. We have investigated the plasmon-induced reduction of Ag+ ions on bare Au nanoparticles synthesized by laser ablation technique, and citrate-capped Au nanoparticles synthesized by chemical method. It is demonstrated that citrate plays an important role for the reduction of silver ions. The citrate gets oxidized by the ‘hot’ holes produced due to the surface plasmon resonance (SPR) of the Au nanoparticles which then reduces the Ag+ ions to Ag. The importance of excitation laser wavelength is also demonstrated to facilitate the reduction process.

  相似文献   

2.

To form silver nanoparticles by reduction from metal ions in the presence of a reducing agent, D-glucose, a water-soluble derivative of chitosan, succinyl-chitosan, was used as a polymer matrix at room temperature. The synthesis of silver nanoparticles can also be carried out without a reducing agent by thermal activation of the system using an alkali (NaOH) as an accelerator. The presence of silver nanoparticles in the obtained colloidal solutions was judged by the appearance of an absorption band in the electron plasmon resonance spectra (?max = 417 nm). It has been shown that the use of an additional component, polyethylene oxide, in a macromolecular system makes it possible to obtain small silver nanoparticles (1–3 nm). The results of in vitro studies of the antimicrobial activity of the obtained colloidal solutions containing silver nanoparticles confirm that a decrease in the size of silver nanoparticles leads to an expansion of the spectrum of antibacterial activity of strains of gram-positive and gram-negative bacteria (B. subtilis ATCC 6633, S. aureus 209P, E. coli ATCC 25922) and to the manifestation of a pronounced antifungal action in relation to A. niger INA 00760.

  相似文献   

3.
The surface plasmon energy in spherical silver nanoparticles embedded in silica host matrix depends on the size and temperature of the nanoparticles. The dependences of the surface plasmon energy were studied for silver nanoparticles in the size range 11?C30?nm and in the temperature interval 293?C650?K. As the size of the nanoparticles decreases or the temperature increases, the surface plasmon resonance shifts to red. When the size of the nanoparticles decreases, the scattering rate of the conduction electrons increases, which results in the nonlinear red shift of the surface plasmon resonance. The red shift with temperature is linear for larger nanoparticles and becomes nonlinear for smaller ones. As the temperature of the nanoparticles increases, the volume thermal expansion of the nanoparticles leads to the red shift of the surface plasmon resonance. The thermal volume expansion coefficient depends on the size and temperature. It increases with a decrease of the nanoparticle size and an increase of the temperature.  相似文献   

4.
5.
The present work reports an investigation of surface plasmon resonance (SPR) of silver nanoparticles in SiO2–TiO2 hosts. The surface plasmon resonance of silver nanoparticles was observed in the wavelength range 300–400 nm. Numerical calculation of SPR of silver nanoparticles with spherical morphology was done on the basis of discrete dipole approximation (DDA) method. The observed fluorescence spectrum fits well with the theoretically calculated one. The luminescence enhancement is attributed to the strong local electric field which increases the exciting and emitting photons coupled to SPR. An effort has been made to study the surface plasmon mediated excitation energy transfer (EET) between two spherical metal nanoparticles. The van der Waals (vdW) energy between plasmonic silver nanoparticles in the present hosts has been estimated.  相似文献   

6.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

7.
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape 1-5. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications 6. Gold is particularly used because of its low toxicity 7-9. A property of metal nano-colloids is that they can have a strong surface plasmon resonance 10. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal 11, 12.We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles 13-15 or nanostars 16. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids 17-22. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.  相似文献   

8.
The physical mechanisms of metallic nanoparticles formation by laser technology were studied. The system air/Au film/glass was irradiated by laser at the conditions of surface plasmon resonance. A surface electromagnetic wave was excited in Kretchmann configuration by the fundamental and second harmonics of the Q-switched YAG/Nd+3 laser with pulse power density close to the threshold of melting. Nanostructuring of Au film was observed only for the second harmonic (λ = 0.532 μm) irradiation at the surface plasmon polariton resonance (SPR) conditions. Estimations were done using the interference model of the differently directed plasmon polariton waves excited by a surface electromagnetic wave on the metal surface. It was shown that a regular pattern of locally heated spots can be formed in a metallic film by pulsed laser irradiation. The spatial distribution of this pattern is close to the period of interference. The observed effect of laser nanofragmentation is explained by the self-organization of plasmon polariton subsystem in the process of Au nanoparticles formation at high laser intensity levels. These methods open new possibilities for nanostructured surfaces formation utilizing simple self-organization processes.  相似文献   

9.
We have demonstrated that plasma treatments of silver nanoparticles bring about blueshift and narrowing in their localized surface plasmon resonance. Surface-enhanced Raman scattering analysis revealed that hydrocarbons adsorbed on silver surfaces were removed effectively by plasma exposure. It was found that the decrease in Raman line intensity for hydrocarbons was correlated well with the blueshift. Our findings indicate that one of the most important factors for remarkable differences in plasmon resonance wavelengths and line widths reported for the silver nanoparticles supported on substrates between most of the experimental data and calculations by Mie’s theory is due to the impurity adsorption on silver surfaces.  相似文献   

10.
Many methods of synthesizing silver nanoparticles (Ag-NPs) by reducing Ag+ ions using aqueous/organic extracts of various plants have been reported in the past, but the methods are rather slow. In this investigation, silver nanoparticles were quickly synthesized from aqueous silver nitrate through a simple method using leaf extract of a plant—Cynodon dactylon which served as reducing agent, while sunlight acted as a catalyst. The formation of Ag-NPs was indicated by gradual change in colour and pH and confirmed by ultraviolet–visible spectroscopy. The Ag-NPs showed a surface plasmon resonance at 451 nm. Based on the decrease in pH, a possible mechanism of the synthesis of Ag-NPs involving hydroxyl (OH?) ions of polyphenols of the leaf extract is postulated. Ag-NPs having (111) and (200) crystal lattices were confirmed by X-ray diffraction. Scanning electron microscopy revealed the spherical nature of the Ag-NPs, while transmission electron microscopy showed that the nanoparticles were polydispersed with a size range of 8–10 nm. The synthesized Ag-NPs also demonstrated their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhimurium.  相似文献   

11.
One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach.The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles.To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint.To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing conditions. An optimised nanoparticle array alone results in cell Jsc enhancement of about 28%, similar to the effect of the diffuse reflector. The photocurrent can be further increased by coating the nanoparticles by a low refractive index dielectric, like MgF2, and applying the diffused reflector. The complete plasmonic cell structure comprises the polycrystalline silicon film, a silver nanoparticle array, a layer of MgF2, and a diffuse reflector. The Jsc for such cell is 21-23 mA/cm2, up to 45% higher than Jsc of the original cell without light-trapping or ~25% higher than Jsc for the cell with the diffuse reflector only.

Introduction

Light-trapping in silicon solar cells is commonly achieved via light scattering at textured interfaces. Scattered light travels through a cell at oblique angles for a longer distance and when such angles exceed the critical angle at the cell interfaces the light is permanently trapped in the cell by total internal reflection (Animation 1: Light-trapping). Although this scheme works well for most solar cells, there are developing technologies where ultra-thin Si layers are produced planar (e.g. layer-transfer technologies and epitaxial c-Si layers) 1 and or when such layers are not compatible with textures substrates (e.g. evaporated silicon) 2. For such originally planar Si layer alternative light trapping approaches, such as diffuse white paint reflector 3, silicon plasma texturing 4 or high refractive index nanoparticle reflector 5 have been suggested.Metal nanoparticles can effectively scatter incident light into a higher refractive index material, like silicon, due to the surface plasmon resonance effect 6. They also can be easily formed on the planar silicon cell surface thus offering a light-trapping approach alternative to texturing. For a nanoparticle located at the air-silicon interface the scattered light fraction coupled into silicon exceeds 95% and a large faction of that light is scattered at angles above critical providing nearly ideal light-trapping condition (Animation 2: Plasmons on NP). The resonance can be tuned to the wavelength region, which is most important for a particular cell material and design, by varying the nanoparticle average size, surface coverage and local dielectric environment 6,7. Theoretical design principles of plasmonic nanoparticle solar cells have been suggested 8. In practice, Ag nanoparticle array is an ideal light-trapping partner for poly-Si thin-film solar cells because most of these design principle are naturally met. The simplest way of forming nanoparticles by thermal annealing of a thin precursor Ag film results in a random array with a relatively wide size and shape distribution, which is particularly suitable for light-trapping because such an array has a wide resonance peak, covering the wavelength range of 700-900 nm, important for poly-Si solar cell performance. The nanoparticle array can only be located on the rear poly-Si cell surface thus avoiding destructive interference between incident and scattered light which occurs for front-located nanoparticles 9. Moreover, poly-Si thin-film cells do not requires a passivating layer and the flat base-shaped nanoparticles (that naturally result from thermal annealing of a metal film) can be directly placed on silicon further increases plasmonic scattering efficiency due to surface plasmon-polariton resonance 10.The cell with the plasmonic nanoparticle array as described above can have a photocurrent about 28% higher than the original cell. However, the array still transmits a significant amount of light which escapes through the rear of the cell and does not contribute into the current. This loss can be mitigated by adding a rear reflector to allow catching transmitted light and re-directing it back to the cell. Providing sufficient distance between the reflector and the nanoparticles (a few hundred nanometers) the reflected light will then experience one more plasmonic scattering event while passing through the nanoparticle array on re-entering the cell and the reflector itself can be made diffuse - both effects further facilitating light scattering and hence light-trapping. Importantly, the Ag nanoparticles have to be encapsulated with an inert and low refractive index dielectric, like MgF2 or SiO2, from the rear reflector to avoid mechanical and chemical damage 7. Low refractive index for this cladding layer is required to maintain a high coupling fraction into silicon and larger scattering angles, which are ensured by the high optical contrast between the media on both sides of the nanoparticle, silicon and dielectric 6. The photocurrent of the plasmonic cell with the diffuse rear reflector can be up to 45% higher than the current of the original cell or up to 25% higher than the current of an equivalent cell with the diffuse reflector only.  相似文献   

12.
Localized surface plasmon resonance incurred by silver nanoparticles is used to enhance the photoelectric conversion efficiency of a TiO2 nanorod-based dye-sensitized solar cell (DSSC). Improved light transmission is observed experimentally in silver nanoparticle-coated FTO glass. The transmission data are used to explore the effect on electrical parameters of DSSC using theoretical model. Current density increased from 11.7 to 12.34 mA/cm2 and open-circuit voltage increased from 704 to 709.5 mV. Overall efficiency enhancement of 6.67 % is observed in TiO2 nanorod-based DSSC due to plasmon-induced light trapping.  相似文献   

13.
14.
The work reported in this paper describes the preparation, morphology, stability and sensitivity of Ag-nanoparticles towards sunlight using Allium sativum, garlic extract for the first time. The synthesized silver particles show an intense surface plasmon resonance band in the visible region at 410 nm. The position of the wavelength maxima, blue and red shift, strongly depends on the sunlight and pH. TEM analysis revealed the presence of spherical, different size (from 5.0 to 30 nm) and garlic constituents bio-conjugated, stabilized and/or layered silver nanoparticles. The concentrations of garlic extract, cetyltrimethylammonium bromide, Ag+ ions and reaction time play vital roles for nucleus formation and the growth processes. Sulfur-containing biomolecules of extract, especially cysteine, are responsible for the reduction of Ag+ ions into metallic Ag0. The agglomeration number of the silver nanoparticles (N Ag) and the average number of free electrons per particle (n fe) are calculated and discussed.  相似文献   

15.

The synthesis of metal nanoparticles by green methods attained enormous attention in recent years due to its easiness, non-toxicity, and eco-friendly nature. In the present study, noble metal nanoparticles such as silver and gold were prepared using an aqueous leaf extract of a medicinal plant, Bauhinia purpurea. The leaf extract performed as both reducing and stabilizing agents for the development of nanoparticles. The formations of silver and gold nanoparticles were confirmed by observing the surface plasmon resonance peaks at 430 nm and 560 nm, respectively, in UV–Vis absorption spectrum. Various properties of nanoparticles were demonstrated using the characterization techniques such as FTIR, XRD, TEM, and EDX. The synthesized silver and gold nanoparticles had a momentous anticancer effect against lung carcinoma cell line A549 in a dose-dependent manner with IC50 values of 27.97 µg/mL and 36.39 µg/mL, respectively. The antimicrobial studies of synthesized nanoparticles were carried out by agar well diffusion method against six microbial strains. Silver and gold nanoparticles were also showed high antioxidant potentials with IC50 values of 42.37 µg/mL and 27.21 µg/mL, respectively; it was measured using DPPH assay. Additionally, the nanoparticles were observed to be good catalysts for the reduction of organic dyes.

  相似文献   

16.
Plasmonic Properties of Silver Nanoparticles on Two Substrates   总被引:1,自引:0,他引:1  
In this paper, we examine the plasmonic properties of silver nanoparticles, with an emphasis on the sensitivity of the extinction spectra on the supporting substrate: silica (SiO2) microsphere and indium tin oxide (ITO) coated glass slide, on which silver particles are deposited electroless and electrochemically, respectively. The microstructures and phases of these nanoparticles are characterized by transmission electron microscopy, field emission electron microscopy and X-ray diffraction analysis. The surface plasmon resonance (SPR) properties which are experimentally measured in the ultraviolet-visible-near infrared spectral region are compared to electrodynamics calculations based on the discrete dipole approximation. A wide SPR band ranging from 400 to 800 nm is observed for the silver nanoparticles on a silica microsphere, which is similar to the plasmon resonance characteristics of metal nanoshells. The SPR of a conducting substrate, however, has an effect on the plasmonic properties of silver nanoparticles at longer wavelength.   相似文献   

17.
By taking silver nanoparticles (Ag-NPs) as plasmon resonance scattering (PRS) indicator considering that Ag-NPs have strong plasmon resonance light scattering signals corresponding to their plasmon resonance absorption (PRA), we propose a label-free visual immunoassay on the solid support of glass slides. Our investigations showed that Ag-NPs could be adsorbed on the surface of glass slides where immunoreactions between a previously immobilized antigen and its antibody have occurred if the glass slides were immersed in an Ag-NP suspension whose pH value has been carefully adjusted. The optimal pH of the Ag-NP suspension depends on the nature of previously immobilized antigen and its antibody. It was found that the adsorption of negative-charged Ag-NPs on the surface of glass slides depends only on the content of antibody under optimal conditions. With a common spectrofluorometer to measure the PRS signals of the Ag-NPs adsorbed on the surface, we could detect antibody in the range of 10 to 160 ng ml−1. If a white light-emitting diode (LED) torch is employed to illuminate the glass slides, we can make visual detection of the antibody by the naked eye.  相似文献   

18.
Green synthesis of silver nanoparticles (AgNPs) has become a promising environmentally benign synthetic route in nanoscience and nanotechnology during recent years. In the present work, we have developed an environment-friendly and low-cost method for synthesis of silver nanoparticles from silver nitrate using aqueous fruit extract of Dillenia indica. The as-synthesized nanoparticles were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM) and X-ray diffraction (XRD). FTIR study was performed to know the interaction of bio-molecules present in the fruit extract with AgNPs. The catalytic application of the as-synthesized AgNPs was demonstrated against degradation of methylene blue (MB) in aqueous system. The absorption spectra of colloidal suspension of AgNPs showed characteristic surface plasmon resonance (SPR) band centred at a wavelength of 416?nm. TEM image showed that the AgNPs were almost spherical in shape having an average diameter of 10.78?±?.48?nm. XRD pattern and selected area electron diffraction (SAED) pattern with bright spots signify the crystalline nature of nanoparticles. The fruit extract-capped AgNPs was highly stable and have showed the effective catalytic activity in reduction of MB dye.  相似文献   

19.
We discovered that Yeast Extract Mannitol (YEM) medium possessed immense potential to generate silver nanoparticles from AgNO3 upon autoclaving, which was evident from (i) alteration in color of the medium; (ii) peak at ∼410 nm in UV-Vis spectrum due to surface plasmon resonance specific to silver nanoparticles; and (iii) TEM investigations. TEM coupled with EDX confirmed that distinct nanoparticles were composed of silver. Yeast extract and mannitol were key components of YEM medium responsible for the formation of nanoparticles. PXRD analysis indicated crystalline geometry and Ag/Ag2O phases in nanoparticles generated with YEM medium, yeast extract and mannitol. Our investigations also revealed that both mannitol and yeast extract possessed potential to convert ∼80% of silver ions in 0.5 mM AgNO3 to nanoparticles, on autoclaving for 30 min at 121°C under a pressure of 1.06 kg/cm2. Addition of filter sterilized AgNO3 under ambient conditions to pre-autoclaved YEM medium and yeast extract brought about color change due to the formation of silver nanoparticles, but required prolonged duration. In general, even after 72 h intensity of color was significantly less than that recorded following autoclaving. Silver nanoparticles formed at room temperature were more heterogeneous compared to that obtained upon autoclaving. In summary, our findings demonstrated that (i) YEM medium and its constituents promote synthesis of silver nanoparticles; and (ii) autoclaving enhances rapid synthesis of silver nanoparticles by YEM medium, yeast extract and mannitol.  相似文献   

20.
Plasmon enhancement of luminescence close to noble metal nanoparticles is a powerful tool for many optical purposes. Although the plasmon properties of noble metal nanoparticles found application in many different areas, no reports on their use to detect ionizing radiation exist. Here, we investigate the use of the localized surface plasmon resonance of noble metal nanoparticles, to obtain plasmon-enhanced optically stimulated luminescence (OSL). The OSL intensity depends on particle size: we observed enhanced OSL in samples containing silver nanoparticles and quenched OSL in samples bearing silver microparticles. The local field close to the nanoparticles surface under surface plasmon resonance condition increased the excitation rate of the X-ray-generated F centers, enhancing luminescence. Moreover, noble metal nanoparticles can also concentrate luminescent centers close to their surface, leading to a synergistic effect that facilitates detection and intensify OSL. These promising findings may give rise to a new class of ionizing radiation detectors. Figure
OSL intensity dependence on concentration of nanoparticles and microparticles of a NaCl/Ag composite. For nanoparticles, there is a sustained enhancement with mass content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号