首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
摘要:【目的】益生菌粘附于肠道上皮细胞上是它的一种益生作用。本研究通过体内外实验,分析嗜酸乳杆菌NCFM对粘附相关基因的影响。【方法】利用GO (Gene Ontolog) 分类筛选Human Genome U133 Plus 2.0 Array基因表达谱芯片中的粘附相关基因,通过体外Caco-2细胞培养模型和体内小鼠粘附模型,采用Real-time PCR方法对粘附相关基因进行验证分析。【结果】经NCFM作用后,12个粘附相关基因呈上调表达。利用Real-time PCR验证,12个基因在体内和体外经嗜酸乳杆菌NCFM作用后亦均同样为上调表达,其中CCL2基因上调表达最为明显。【结论】经体内外研究表明,嗜酸乳杆菌NCFM粘附肠上皮细胞后能够引起宿主粘附相关基因出现特定表达变化,为今后深入揭示其粘附作用提供必要基础。  相似文献   

2.
AI-3 synthesis is not dependent on luxS in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The quorum-sensing (QS) signal autoinducer-2 (AI-2) has been proposed to promote interspecies signaling in a broad range of bacterial species. AI-2 is spontaneously derived from 4,5-dihydroxy-2,3-pentanedione that, along with homocysteine, is produced by cleavage of S-adenosylhomocysteine (SAH) and S-ribosylhomocysteine by the Pfs and LuxS enzymes. Numerous phenotypes have been attributed to AI-2 QS signaling using luxS mutants. We have previously reported that the luxS mutation also affects the synthesis of the AI-3 autoinducer that activates enterohemorrhagic Escherichia coli virulence genes. Here we show that several species of bacteria synthesize AI-3, suggesting a possible role in interspecies bacterial communication. The luxS mutation leaves the cell with only one pathway, involving oxaloacetate and l-glutamate, for de novo synthesis of homocysteine. The exclusive use of this pathway for homocysteine production appears to alter metabolism in the luxS mutant, leading to decreased levels of AI-3. The addition of aspartate and expression of an aromatic amino acid transporter, as well as a tyrosine-specific transporter, restored AI-3-dependent phenotypes in an luxS mutant. The defect in AI-3 production, but not in AI-2 production, in the luxS mutant was restored by expressing the Pseudomonas aeruginosa S-adenosylhomocysteine hydrolase that synthesizes homocysteine directly from SAH. Furthermore, phenotype microarrays revealed that the luxS mutation caused numerous metabolic deficiencies, while AI-3 signaling had little effect on metabolism. This study examines how AI-3 production is affected by the luxS mutation and explores the roles of the LuxS/AI-2 system in metabolism and QS.  相似文献   

3.
Factors involved in adherence of lactobacilli to human Caco-2 cells.   总被引:30,自引:11,他引:19       下载免费PDF全文
A quantitative assay performed with bacterial cells labelled with [3H]thymidine was used to investigate factors involved in the adherence of human isolates Lactobacillus acidophilus BG2FO4 and NCFM/N2 and Lactobacillus gasseri ADH to human Caco-2 intestinal cells. For all three strains, adherence was concentration dependent, greater at acidic pH values, and significantly greater than adherence of a control dairy isolate, Lactobacillus delbrueckii subsp. bulgaricus 1489. Adherence of L. acidophilus BG2FO4 and NCFM/N2 was decreased by protease treatment of the bacterial cells, whereas adherence of L. gasseri ADH either was not affected or was enhanced by protease treatment. Putative surface layer proteins were identified on L. acidophilus BG2FO4 and NCFM/N2 cells but were not involved in adherence. Periodate oxidation of bacterial cell surface carbohydrates significantly reduced adherence of L. gasseri ADH, moderately reduced adherence of L. acidophilus BG2FO4, and had no effect on adherence of L. acidophilus NCFM/N2. These results indicate that Lactobacillus species adhere to human intestinal cells via mechanisms which involve different combinations of carbohydrate and protein factors on the bacterial cell surface. The involvement of a secreted bridging protein, which has been proposed as the primary mediator of adherence of L. acidophilus BG2FO4 in spent culture supernatant (M.-H. Coconnier, T. R. Klaenhammer, S. Kernéis, M.-F. Bernet, and A. L. Servin, Appl. Environ. Microbiol. 58:2034-2039, 1992), was not confirmed in this study. Rather, a pH effect on Caco-2 cells contributed significantly to the adherence of this strain in spent culture supernatant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The bioluminescence assay using Vibrio harveyi BB170 was used to examine quorum-sensing autoinducer 2 (AI-2) activity from cell-free culture fluids of rumen bacteria. The assay showed that the culture fluids of four species of rumen bacteria, Butyrivibrio fibrisolvens, Eubacterium ruminantium, Ruminococcus flavefaciens, and Succinimonas amylolytica, contained AI-2-like molecules. Furthermore, homologues for luxS genes were detected in rumen fluids collected from three cows and in bacterial cells of P. ruminicola subsp. ruminicola and R. flavefaciens. These findings suggest that the quorum-sensing system mediated by AI-2 is present in the rumen.  相似文献   

6.
The luxS gene of Lactobacillus reuteri 100-23C was amplified by PCR, cloned, and then sequenced. To define a physiological and ecological role for the luxS gene in L. reuteri 100-23C, a luxS mutant was constructed by insertional mutagenesis. The luxS mutant did not produce autoinducers AI-2 or AI-3. Complementation of the luxS mutation by a plasmid construct containing luxS restored AI-2 and AI-3 synthesis. In vitro experiments revealed that neither the growth rate, nor the cell yield, nor cell survival in the stationary phase were compromised in the luxS mutant relative to the wild type and complemented mutant. The ATP content of exponentially growing cells of the luxS mutant was, however, 65% of that of wild-type cells. Biofilms formed by the luxS mutant on plastic surfaces in a bioreactor were thicker than those formed by the wild type. Biofilm thickness was not restored to wild-type values by the addition of purified AI-2 to the culture medium. In vivo experiments, conducted with ex-Lactobacillus-free mice, showed that biofilms formed by the mutant strain on the epithelial surface of the forestomach were approximately twice as thick as those formed by the wild type. The ecological performance of the luxS mutant, when in competition with L. reuteri strain 100-93 in the mouse cecum, was reduced compared to that of a xylA mutant of 100-23C. These results demonstrate that LuxS influences important ecological attributes of L. reuteri 100-23C, the consequences of which are niche specific.  相似文献   

7.
8.
9.
10.
The bioluminescence assay system using Vibrio harveyi reporter strains were used to examine quorum-sensing autoinducer (AI) activity from Mannheimia haemolytica A1 cell-free culture supernatant. We showed that M. haemolytica A1 cell-free culture supernatant contains molecules that can stimulate the quorum-sensing system that regulates the expression of the luciferase operon in V. harveyi. Specifically, M. haemolytica A1 can stimulate only the quorum system 2 but not system 1, suggesting that the culture supernatant only contains molecules similar to AI-2 of V. harveyi. The bioluminescence assay was also used to show that culture supernatants from related Pasteurellaceae organisms, Pasteurella multocida, Pasteurella trehalosi, Actinobacillus suis and Actinobacillus pleuropneumoniae, also contain AI-2-like molecules. This is consistent with the presence of a luxS homolog in the genomes of P. multocida and A. pleuropneumoniae. A luxS homolog was cloned by PCR from M. haemolytica A1 using sequencing data from the ongoing genome sequencing project. The cloned luxS(M.h.) was able to complement AI-2 production in the Escherichia coli DH5alpha luxS mutant. This is the first report of a quorum-sensing activity in M. haemolytica A1 and suggests that this bacterium utilizes this mechanism to regulate expression of genes under specific conditions.  相似文献   

11.
【目的】研究嗜酸乳杆菌NCFM对肠道上皮细胞中免疫与炎症介质因子PTX3表达的影响,并进一步揭示其调节机制。【方法】嗜酸乳杆菌NCFM与Caco-2细胞共培养0、2、4、8和12 h,提取细胞RNA,采用RealTime RT-PCR方法检测PTX3基因的表达。嗜酸乳杆菌NCFM与Caco-2细胞共培养0、0.5、1、2和4 h,提取细胞蛋白质,采用Western blot方法检测NF-κB的磷酸化水平;用NF-κB的特异性抑制剂PDTC预处理Caco-2细胞30 min,然后加入嗜酸乳杆菌NCFM作用2 h,提取细胞RNA,采用Real Time RT-PCR方法检测PTX3基因的表达。【结果】嗜酸乳杆菌NCFM与Caco-2细胞共培养后能诱导PTX3的表达,并且在共培养4 h的时候PTX3的表达量达到最大,然后逐渐下降;嗜酸乳杆菌NCFM能快速的诱导NF-κB的磷酸化,并且在加入其特异性抑制剂PDTC后,PTX3的表达显著下降。【结论】嗜酸乳杆菌NCFM作用于肠道上皮细胞后能够通过迅速激活NF-κB途径暂时性的调控PTX3的表达。  相似文献   

12.
Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regulated gene that produces active AI-2 able to mediate the interspecific activation of light production in Vibrio harveyi. We demonstrated that in B. subtilis, luxS expression was under the control of a novel AI-2-dependent negative regulatory feedback loop that indicated an important role for AI-2 as a signaling molecule. Even though luxS did not affect spore development, AI-2 production was negatively regulated by the master regulatory proteins of pluricellular behavior, SinR and Spo0A. Interestingly, wild B. subtilis cells, from the undomesticated and probiotic B. subtilis natto strain, required the LuxS-dependent QSS to form robust and differentiated biofilms and also to swarm on solid surfaces. Furthermore, LuxS activity was required for the formation of sophisticated aerial colonies that behaved as giant fruiting bodies where AI-2 production and spore morphogenesis were spatially regulated at different sites of the developing colony. We proposed that LuxS/AI-2 constitutes a novel form of quorum-sensing regulation where AI-2 behaves as a morphogen-like molecule that coordinates the social and pluricellular behavior of B. subtilis.  相似文献   

13.
The bacterial quorum-sensing autoinducer 2 (AI-2) has received intense interest because the gene for its synthase, luxS, is common among a large number of bacterial species. We have identified luxS-controlled genes in Escherichia coli under two different growth conditions using DNA microarrays. Twenty-three genes were affected by luxS deletion in the presence of glucose, and 63 genes were influenced by luxS deletion in the absence of glucose. Minimal overlap among these gene sets suggests the role of luxS is condition dependent. Under the latter condition, the metE gene, the lsrACDBFG operon, and the flanking genes of the lsr operon (lsrR, lsrK, tam, and yneE) were among the most significantly induced genes by luxS. The E. coli lsr operon includes an additional gene, tam, encoding an S-adenosyl-l-methionine-dependent methyltransferase. Also, lsrR and lsrK belong to the same operon, lsrRK, which is positively regulated by the cyclic AMP receptor protein and negatively regulated by LsrR. lsrK is additionally transcribed by a promoter between lsrR and lsrK. Deletion of luxS was also shown to affect genes involved in methionine biosynthesis, methyl transfer reactions, iron uptake, and utilization of carbon. It was surprising, however, that so few genes were affected by luxS deletion in this E. coli K-12 strain under these conditions. Most of the highly induced genes are related to AI-2 production and transport. These data are consistent with the function of LuxS as an important metabolic enzyme but appear not to support the role of AI-2 as a true signal molecule for E. coli W3110 under the investigated conditions.  相似文献   

14.
LuxS is responsible for the production of autoinducer 2 (AI-2), which is involved in the quorum-sensing response of Vibrio harveyi. AI-2 is found in several other gram-negative and gram-positive bacteria and is therefore considered a good candidate for an interspecies communication signal molecule. In order to determine if this system is functional in the gastrointestinal pathogen Listeria monocytogenes EGD-e, an AI-2 bioassay was performed with culture supernatants. The results indicated that this bacterium produces AI-2 like molecules. A potential ortholog of V. harveyi luxS, lmo1288, was found by performing sequence similarity searches and complementation experiments with Escherichia coli DH5alpha, a luxS null strain. lmo1288 was found to be a functional luxS ortholog involved in AI-2 synthesis. Indeed, interruption of lmo1288 resulted in loss of the AI-2 signal. Although no significant differences were observed between Lux1 and EGD-e with regard to planktonic growth (at 10 degrees C, 15 degrees C, 25 degrees C, and 42 degrees C), swimming motility, and phospholipase and hemolytic activity, biofilm culture experiments showed that under batch conditions between 25% and 58% more Lux1 cells than EGD-e cells were attached to the surface depending on the incubation time. During biofilm growth in continuous conditions after 48 h of culture, Lux1 biofilms were 17 times denser than EGD-e biofilms. Finally, our results showed that Lux1 accumulates more S-adenosyl homocysteine (SAH) and S-ribosyl homocysteine (SRH) in culture supernatant than the parental strain accumulates and that SRH, but not SAH or AI-2, is able to modify the number of attached cells.  相似文献   

15.
16.
Communication based on autoinducer 2 (AI-2) is widespread among gram-negative and gram-positive bacteria, and the AI-2 pathway can control the expression of genes involved in a variety of metabolic pathways and pathogenic mechanisms. In the present study, we identified luxS, a gene responsible for the synthesis of AI-2, in Streptococcus gordonii, a major component of the dental plaque biofilm. S. gordonii conditioned medium induced bioluminescence in an AI-2 reporter strain of Vibrio harveyi. An isogenic mutant of S. gordonii, generated by insertional inactivation of the luxS gene, was unaffected in growth and in its ability to form biofilms on polystyrene surfaces. In contrast, the mutant strain failed to induce bioluminescence in V. harveyi and was unable to form a mixed species biofilm with a LuxS-null strain of the periodontal pathogen Porphyromonas gingivalis. Complementation of the luxS mutation in S. gordonii restored normal biofilm formation with the luxS-deficient P. gingivalis. Differential display PCR demonstrated that the inactivation of S. gordonii luxS downregulated the expression of a number of genes, including gtfG, encoding glucosyltransferase; fruA, encoding extracellular exo-beta-D-fructosidase; and lacD encoding tagatose 1,6-diphosphate aldolase. However, S. gordonii cell surface expression of SspA and SspB proteins, previously implicated in mediating adhesion between S. gordonii and P. gingivalis, was unaffected by inactivation of luxS. The results suggest that S. gordonii produces an AI-2-like signaling molecule that regulates aspects of carbohydrate metabolism in the organism. Furthermore, LuxS-dependent intercellular communication is essential for biofilm formation between nongrowing cells of P. gingivalis and S. gordonii.  相似文献   

17.
18.
The formation of biofilm communities enhances the persistence of Vibrio cholerae in aquatic environments. Biofilm production is repressed by the quorum-sensing regulator HapR in response to the accumulation of CAI-1 and AI-2. CAI-1 is the strongest input signal activating HapR, whereas the role of AI-2 remains ill-defined. In the present study, we show that a V. cholerae luxS (AI-2-defective) mutant made increased biofilm. Interestingly, cells in the biofilm were more responsive to AI-2 deficiency than cells from the planktonic population.  相似文献   

19.
Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro.  相似文献   

20.
Autoinducers are important for cellular communication of bacteria. The luxS gene has a central role in the synthesis of autoinducer-2 (AI-2). The gene was identified in a shotgun library of Erwinia amylovora and primers designed for PCR amplification from bacterial DNA. Supernatants of several Erwinia amylovora strains were assayed for AI-2 activity with a Vibrio harveyi mutant and were positive. Many other plant-associated bacteria also showed AI-2 activity such as Erwinia pyrifoliae and Erwinia tasmaniensis. The luxS genes of several bacteria were cloned, sequenced, and complemented Escherichia coli strain DH5alpha and a Salmonella typhimurium mutant, both defective in luxS, for synthesis of AI-2. Assays to detect AI-2 activity in culture supernatants of several Pseudomonas syringae pathovars failed, which may indicate the absence of AI-2 or synthesis of another type. Several reporter strains did not detect synthesis of an acyl homoserine lactone (AHL, AI-1) by Erwinia amylovora, but confirmed AHL-synthesis for Erwinia carotovora ssp. atroseptica and Pantoea stewartii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号