首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic Analysis of the Maltose A Region in Escherichia coli   总被引:25,自引:18,他引:7       下载免费PDF全文
The genetic map of the maltose A locus of Escherichia coli contains at least three closely linked genes, malT, malP, and malQ. The order of these genes is established by deletion mapping. MalP and malQ, the presumed structural genes for maltodextrin phosphorylase and amylomaltase, belong to the same operon. MalT may be a regulator gene involved in the positive control of this operon.  相似文献   

2.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

3.
To study the influence of phosphoglucomutase (PGM) activity on exopolysaccharide (EPS) synthesis in glucose- and lactose-growing Streptococcus thermophilus, a knockout PGM mutant and a strain with elevated PGM activity were constructed. The pgmA gene, encoding PGM in S. thermophilus LY03, was identified and cloned. The gene was functional in Escherichia coli and was shown to be expressed from its own promoter. The pgmA-deficient mutant was unable to grow on glucose, while the mutation did not affect growth on lactose. Overexpression of pgmA had no significant effect on EPS production in glucose-growing cells. Neither deletion nor overexpression of pgmA changed the growth or EPS production on lactose. Thus, the EPS precursors in lactose-utilizing S. thermophilus are most probably formed from the galactose moiety of lactose via the Leloir pathway, which circumvents the need for a functional PGM.  相似文献   

4.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

5.
Escherichia coli is being developed as a biocatalyst for bulk chemical production from inexpensive carbohydrates derived from lignocellulose. Potential substrates include the soluble xylodextrins (xyloside, xylooligosaccharide) and xylobiose that are produced by treatments designed to expose cellulose for subsequent enzymatic hydrolysis. Adjacent genes encoding xylobiose uptake and hydrolysis were cloned from Klebsiella oxytoca M5A1 and are functionally expressed in ethanologenic E. coli. The xylosidase encoded by xynB contains the COG3507 domain characteristic of glycosyl hydrolase family 43. The xynT gene encodes a membrane protein containing the MelB domain (COG2211) found in Na+/melibiose symporters and related proteins. These two genes form a bicistronic operon that appears to be regulated by xylose (XylR) and by catabolite repression in both K. oxytoca and recombinant E. coli. Homologs of this operon were found in Klebsiella pneumoniae, Lactobacillus lactis, E. coli, Clostridium acetobutylicum, and Bacillus subtilis based on sequence comparisons. Based on similarities in protein sequence, the xynTB genes in K. oxytoca appear to have originated from a gram-positive ancestor related to L. lactis. Functional expression of xynB allowed ethanologenic E. coli to metabolize xylodextrins (xylosides) containing up to six xylose residues without the addition of enzyme supplements. 4-O-methylglucuronic acid substitutions at the nonreducing termini of soluble xylodextrins blocked further degradation by the XynB xylosidase. The rate of xylodextrin utilization by recombinant E. coli was increased when a full-length xynT gene was included with xynB, consistent with xynT functioning as a symport. Hydrolysis rates were inversely related to xylodextrin chain length, with xylobiose as the preferred substrate. Xylodextrins were utilized more rapidly by recombinant E. coli than K. oxytoca M5A1 (the source of xynT and xynB). XynB exhibited weak arabinosidase activity, 3% that of xylosidase.  相似文献   

6.
The nucleotide sequences of the Escherichia coli genome between the glycogen biosynthetic genes glgB and glgC, and 1170 bp of DNA which follows glgA have been determined. The region between glgB and glgC contains an open reading frame (ORF) of 1521 bp which we call glgX. This ORF is capable of coding for an Mr 56 684 protein. The deduced amino acid (aa) sequence for the putative product shows significant similarity to the E. coli glycogen branching enzyme, and to several different glucan hydrolases and transferases. The regions of sequence similarity include residues which have been reported to be involved in substrate binding and catalysis by taka-amylase. This suggests that the proposed product may catalyze hydrolysis or glycosyltransferase reactions. The cloned region which follows glgA contains an incomplete ORF (1149 bp), glgY, which appears to encode 383 aa of the N terminus of glycogen phosphorylase, based upon sequence similarity with the enzyme from rabbit muscle (47% identical aa residues) and with maltodextrin phosphorylase from E. coli (37% identical aa residues). Results suggest that neither ORF is required for glycogen biosynthesis. The localization of glycogen biosynthetic and degradative genes together in a cluster may facilitate the regulation of these systems in vivo.  相似文献   

7.
The arsenic resistance (ars) operon from plasmid pKW301 of Acidiphilium multivorum AIU 301 was cloned and sequenced. This DNA sequence contains five genes in the following order: arsR, arsD, arsA, arsB, arsC. The predicted amino acid sequences of all of the gene products are homologous to the amino acid sequences of the ars gene products of Escherichia coli plasmid R773 and IncN plasmid R46. The ars operon cloned from A. multivorum conferred resistance to arsenate and arsenite on E. coli. Expression of the ars genes with the bacteriophage T7 RNA polymerase-promoter system allowed E. coli to overexpress ArsD, ArsA, and ArsC but not ArsR or ArsB. The apparent molecular weights of ArsD, ArsA, and ArsC were 13,000, 64,000, and 16,000, respectively. A primer extension analysis showed that the ars mRNA started at a position 19 nucleotides upstream from the arsR ATG in E. coli. Although the arsR gene of A. multivorum AIU 301 encodes a polypeptide of 84 amino acids that is smaller and less homologous than any of the other ArsR proteins, inactivation of the arsR gene resulted in constitutive expression of the ars genes, suggesting that ArsR of pKW301 controls the expression of this operon.  相似文献   

8.
9.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization ofβ-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl? phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl? wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

10.
11.
The cDNA sequence for human renin was modified for use in the expression of the mature protein in E. coli. This was accomplished by the removal of the 5′ untranslated region and sequences coding for the signal peptide and a portion of the mature protein. An oligonucleotide linker was inserted which supplied the deleted coding information for the mature protein in a form optimized for translation in E. coli, in addition to an initiation codon. The modified gene was cloned into an expression vector consisting of the promoter from the tryptophan operon of E. coli and trp L Shine-Dalgarno sequence. In an appropriate host strain the expressed protein is the most prominent species present, and accounts for at least 10% of the total cellular protein. The expressed protein was verified to be renin by its molecular weight, ability to bind a renin antibody, and N-terminal amino acid sequence.  相似文献   

12.
Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose‐specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6‐phospho‐α‐glucosidase, which in B. subtilis hydrolyses maltose 6′‐P into glucose and glucose 6‐P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6‐P into glucose 1‐P and glucose 6‐P. However, purified MalP phosphorolyses maltose but not maltose 6′‐P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6′‐P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1‐P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6′‐P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6′‐P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1‐P. MapP therefore connects PTS‐mediated maltose uptake to maltose phosphorylase‐catalysed metabolism. Dephosphorylation assays with a wide variety of phospho‐substrates revealed that MapP preferably dephosphorylates disaccharides containing an O‐α‐glycosyl linkage.  相似文献   

13.
A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395, and its activity was studied in Escherichia coli. The 3.9-kb operon comprising three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EIIMtl) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD), and a mannitol operon repressor (MtlR). The transport of [3H]mannitol by the cloned mannitol operon in E. coli was 13.8 ± 1.4 nmol/min/mg protein. The insertional inactivation of EIIMtl abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram-positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon.  相似文献   

14.
We have cloned a DNA fragment containing the gene for a cell wall hydrolase from Bacillus licheniformis FD0120 into Escherichia coli. Sequencing of the fragment showed the presence of an open reading frame (ORF; designated as cwlL), which is different from the B. licheniformis cell wall hydrolase gene cwlM, and encodes a polypeptide of 360 amino acids with a molecular mass of 38 994. The enzyme purified from the E. coli clone is an N-acetylmuramoyl-l-alanine amidase, which has a Mr value of 41 kDa as determined by SDS-polyacrylamide gel electrophoresis, and is able to digest B. licheniformis, B. subtilis and Micrococcus luteus cell walls. The nucleotide and deduced amino acid sequences of cwlL are very similar to those of ORF3 in the putative operon xpaL1-xpaL2-ORF3 in B. licheniformis MC14. Moreover, the amino acid sequence homology of CwlL with the B. subtilis amidase CwlA indicates two evolutionarily distinguishable regions in CwlL. The sequence homology of CwlL with other cell wall hydrolases and the regulation of cwlL are discussed.  相似文献   

15.
16.
Cytosolic extracts of Lactobacillus johnsonii 100-100 (previously reported as Lactobacillus sp. strain 100-100) contain four heterotrimeric isozymes composed of two peptides, α and β, with conjugated bile salt hydrolase (BSH) activity. We now report cloning, from the genome of strain 100-100, a 2,977-bp DNA segment that expresses BSH activity in Escherichia coli. The sequencing of this segment showed that it contained one complete and two partial open reading frames (ORFs). The 3′ partial ORF (927 nucleotides) was predicted by BLAST and confirmed with 5′ and 3′ deletions to be a BSH gene. Thermal asymmetric interlaced PCR was used to extend and complete the 948-nucleotide sequence of the BSH gene 3′ of the cloned segment. The predicted amino acid sequence of the 5′ partial ORF (651 nucleotides) was about 80% similar to the C-terminal half of the largest, complete ORF (1,353 nucleotides), and these two putative proteins were similar to several amine, multidrug resistance, and sugar transport proteins of the major facilitator superfamily. E. coli DH5α cells transformed with a construct containing these ORFs, in concert with an extracellular factor produced by strain 100-100, demonstrated levels of uptake of [14C]taurocholic acid that were increased as much as threefold over control levels. [14C]Cholic acid was taken up in similar amounts by strain DH5α pSportI (control) and DH5α p2000 (transport clones). These findings support a hypothesis that the ORFs are conjugated bile salt transport genes which may be arranged in an operon with BSH genes.  相似文献   

17.
Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae, Erwinia amylovora, and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3.0-kb PstI fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc. Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based Plac promoter, indicating that the native promoter of lsc was not functional in E. coli. Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli. A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria.  相似文献   

18.
19.
We report the cloning and sequencing of a gene cluster encoding a maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis that is homologous to the malEFG cluster encoding the Escherichia coli maltose transport system. The deduced amino acid sequence of the malE product, the trehalose/maltose-binding protein (TMBP), shows at its N terminus a signal sequence typical for bacterial secreted proteins containing a glyceride lipid modification at the N-terminal cysteine. The T. litoralis malE gene was expressed in E. coli under control of an inducible promoter with and without its natural signal sequence. In addition, in one construct the endogenous signal sequence was replaced by the E. coli MalE signal sequence. The secreted, soluble recombinant protein was analyzed for its binding activity towards trehalose and maltose. The protein bound both sugars at 85°C with a Kd of 0.16 μM. Antibodies raised against the recombinant soluble TMBP recognized the detergent-soluble TMBP isolated from T. litoralis membranes as well as the products from all other DNA constructs expressed in E. coli. Transmembrane segments 1 and 2 as well as the N-terminal portion of the large periplasmic loop of the E. coli MalF protein are missing in the T. litoralis MalF. MalG is homologous throughout the entire sequence, including the six transmembrane segments. The conserved EAA loop is present in both proteins. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the binding protein-dependent ABC transport systems in these two phylogenetic branches.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, β-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号