首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In this study, we have demonstrated that only Campylobacter species closely related to C. jejuni produce glycoproteins that interact with both a C. jejuni N-linked-glycan-specific antiserum and a lectin known to bind to the C. jejuni N-linked glycan. In order to further investigate the structure of Campylobacter N-linked glycans, we employed an in vitro peptide glycosylation assay combined with mass spectrometry to demonstrate that Campylobacter species produce a range of structurally distinct N-linked glycans with variations in the number of sugar residues (penta-, hexa-, and heptasaccharides), the presence of branching sugars, and monosaccharide content. These data considerably expand our knowledge of bacterial N-linked glycan structure and provide a framework for investigating the role of glycosyltransferases and sugar biosynthesis enzymes in glycoprotein biosynthesis with practical implications for synthetic biology and glycoengineering.  相似文献   

2.
In eukaryotes, N-linked protein glycosylation is a universal modification involving addition of preformed oligosaccharides to select Asn-Xaa-Ser/Thr motifs and influencing multiple biological events. We recently demonstrated that Campylobacter jejuni is the first member of the Bacteria to possess an N-linked glycan pathway. In this study, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to probe and quantitate C. jejuni N-glycan biosynthesis in vivo. To confirm HR-MAS NMR findings, glycosylation mutants were screened for chicken colonization potential, and glycoproteins were examined by mass spectrometry and lectin blotting. Consistent with the mechanism in eukaryotes, the combined data indicate that bacterial glycans are assembled en bloc, emphasizing the evolutionary conservation of protein N glycosylation. We also show that under the conditions examined, PglG plays no role in glycan biosynthesis, PglI is the glucosyltransferase and the putative ABC transporter, and WlaB (renamed PglK) is required for glycan assembly. These studies underpin the mechanism of N-linked protein glycosylation in Bacteria and provide a simple model system for investigating protein glycosylation and for exploitation in glycoengineering.  相似文献   

3.
Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipopolysaccharide (LPS) O antigen subunits, which are assembled on an undecaprenyl pyrophosphate lipid carrier. Similarly, PglK (formerly WlaB) is a Campylobacter jejuni-encoded ABC-type transporter proposed to mediate the translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate involved in the recently identified bacterial N-linked protein glycosylation pathway. A combination of genetic and carbohydrate structural analyses defined and characterized flippase activities in the C. jejuni N-linked protein glycosylation and the Escherichia coli LPS O antigen biosynthesis. PglK displayed relaxed substrate specificity with respect to the oligosaccharide structure of the LLO intermediate and complemented a wzx deficiency in E. coli O-antigen biosynthesis. Our experiments provide strong genetic evidence that LLO translocation across membranes can be catalyzed by two distinct proteins that do not share any sequence similarity.  相似文献   

4.
Neisseria gonorrhoeae expresses an O-linked protein glycosylation pathway that targets PilE, the major pilin subunit protein of the Type IV pilus colonization factor. Efforts to define glycan structure and thus the functions of pilin glycosylation (Pgl) components at the molecular level have been hindered by the lack of sensitive methodologies. Here, we utilized a 'top-down' mass spectrometric approach to characterize glycan status using intact pilin protein from isogenic mutants. These structural data enabled us to directly infer the function of six components required for pilin glycosylation and to define the glycan repertoire of strain N400. Additionally, we found that the N. gonorrhoeae pilin glycan is O-acetylated, and identified an enzyme essential for this unique modification. We also identified the N. gonorrhoeae pilin oligosaccharyltransferase using bioinformatics and confirmed its role in pilin glycosylation by directed mutagenesis. Finally, we examined the effects of expressing the PglA glycosyltransferase from the Campylobacter jejuni N-linked glycosylation system that adds N-acetylgalactosamine onto undecaprenylpyrophosphate-linked bacillosamine. The results indicate that the C. jejuni and N. gonorrhoeae pathways can interact in the synthesis of O-linked di- and trisaccharides, and therefore provide the first experimental evidence that biosynthesis of the N. gonorrhoeae pilin glycan involves a lipid-linked oligosaccharide precursor. Together, these findings underpin more detailed studies of pilin glycosylation biology in both N. gonorrhoeae and N. meningitidis, and demonstrate how components of bacterial O- and N-linked pathways can be combined in novel glycoengineering strategies.  相似文献   

5.
Oligosaccharyltransferases (OTases) are responsible for the transfer of carbohydrates from lipid carriers to acceptor proteins and are present in all domains of life. In bacteria, the most studied member of this family is PglB from Campylobacter jejuni (PglB(Cj)). This enzyme is functional in Escherichia coli and, contrary to its eukaryotic counterparts, has the ability to transfer a variety of oligo- and polysaccharides to protein carriers in vivo. Phylogenetic analysis revealed that in the delta proteobacteria Desulfovibrio sp., the PglB homolog is more closely related to eukaryotic and archaeal OTases than to its Campylobacter counterparts. Genetic analysis revealed the presence of a putative operon that might encode all enzymes required for N-glycosylation in Desulfovibrio desulfuricans. D. desulfuricans PglB (PglB(Dd)) was cloned and successfully expressed in E. coli, and its activity was confirmed by transferring the C. jejuni heptasaccharide onto the model protein acceptor AcrA. In contrast to PglB(Cj), which adds two glycan chains to AcrA, a single oligosaccharide was attached to the protein by PglB(Dd). Site-directed mutagenesis of the five putative N-X-S/T glycosylation sites in AcrA and mass spectrometry analysis showed that PglB(Dd) does not recognize the "conventional bacterial glycosylation sequon" consisting of the sequence D/E-X(1)-N-X(2)-S/T (where X(1) and X(2) are any amino acid except proline), and instead used a different site for the attachment of the oligosaccharide than PglB(Cj.). Furthermore, PglB(Dd) exhibited relaxed glycan specificity, being able to transfer mono- and polysaccharides to AcrA. Our analysis constitutes the first characterization of an OTase from delta-proteobacteria involved in N-linked protein glycosylation.  相似文献   

6.
Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions.  相似文献   

7.
Campylobacter jejuni has a general N-linked glycosylation pathway, encoded by the pgl gene cluster. In C. jejuni, a heptasaccharide is transferred from an undecaprenyl pyrophosphate donor [GalNAc-alpha1,4-GalNAc-alpha1,4-(Glcbeta1,3)-GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac-alpha1-PP-undecaprenyl, where Bac is bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose)] to the asparagine side chain of target proteins at the Asn-X-Ser/Thr motif. In this study, we have cloned, overexpressed in Escherichia coli, and purified PglC, the glycosyl-1-phosphate transferase responsible for the first step in the biosynthesis of the undecaprenyl-linked heptasaccharide donor. In addition, we report the first synthetic route to uridine 5'-diphosphobacillosamine. Using the uridine 5'-diphosphobacillosamine and undecaprenyl phosphate, we demonstrate the ability of PglC to produce undecaprenyl pyrophosphate bacillosamine using radiolabeled HPLC and mass spectral analysis. In addition, we revealed that PglC does not accept uridine 5'-diphospho-N-acetylglucosamine or uridine 5'-diphospho-N-acetylgalactosamine as substrates but will accept uridine 5'-diphospho-6-hydroxybacillosamine, an analogue of bacillosamine that retains the C-6 hydroxyl functionality from the biosynthetic precursor. The in vitro characterization of PglC as a bacillosamine 1-phosphoryl transferase provides direct evidence for the early steps in the C. jejuni N-linked glycosylation pathway, and the coupling of PglC with the latter glycosyltransferases (PglA, PglJ, PglH, and PglI) allows for the "one-pot" chemoenzymatic synthesis of the undecaprenyl pyrophosphate heptasaccharide donor.  相似文献   

8.
Glycomics, the study of microbial polysaccharides and genes responsible for their formation, requires the continuous development of rapid and sensitive methods for the identification of glycan structures. In this study, methods for the direct analysis of sugars from 108 to 1010 cells are outlined using the human gastrointestinal pathogen, Campylobacter jejuni. Using capillary-electrophoresis coupled with sensitive electrospray mass spectrometry, we demonstrate variability in the lipid A component of C. jejuni lipooligosaccharides (LOSs). In addition, these sensitive methods have permitted the detection of phase-variable LOS core structures that were not observed previously. High resolution magic angle spinning (HR-MAS) NMR was used to examine capsular polysaccharides directly from campylobacter cells and showed profiles similar to those observed for purified polysaccharides analyzed by solution NMR. This method also exhibited the feasibility of campylobacter serotyping, mutant verification, and preliminary sugar analysis. HR-MAS NMR examination of growth from individual colonies of C. jejuni NCTC11168 indicated that the capsular glycan modifications are also phase-variable. These variants show different staining patterns on deoxycholate-PAGE and reactivity with immune sera. One of the identified modifications was a novel -OP=O(NH2)OMe phosphoramide, not observed previously in nature. In addition, HR-MAS NMR detected the N-linked glycan, GalNAc-alpha1,4-GalNAc-alpha1,4-[Glc-beta1,3-]GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac, where Bac is 2,4-diacetamido-2,4,6-trideoxy-d-glucopyranose, in C. jejuni and Campylobacter coli. The presence of this common heptasaccharide in multiple campylobacter isolates demonstrates the conservation of the N-linked protein glycosylation pathway in this organism and describes the first report of HR-MAS NMR detection of N-linked glycans on glycoproteins from intact bacterial cells.  相似文献   

9.
Glycosylation is the predominant protein modification to diversify the functionality of proteins. In particular, N-linked protein glycosylation can increase the biophysical and pharmacokinetic properties of therapeutic proteins. However, the major challenges in studying the consequences of protein glycosylation on a molecular level are caused by glycan heterogeneities of currently used eukaryotic expression systems, but the discovery of the N-linked protein glycosylation system in the ε-proteobacterium Campylobacter jejuni and its functional transfer to Escherichia coli opened up the possibility to produce glycoproteins in bacteria. Toward this goal, we elucidated whether antibody fragments, a potential class of therapeutic proteins, are amenable to bacterial N-linked glycosylation, thereby improving their biophysical properties. We describe a new strategy for glycoengineering and production of quantitative amounts of glycosylated scFv 3D5 at high purity. The analysis revealed the presence of a homogeneous N-glycan that significantly increased the stability and the solubility of the 3D5 antibody fragment. The process of bacterial N-linked glycosylation offers the possibility to specifically address and alter the biophysical properties of proteins.  相似文献   

10.
The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation of diverse recombinant proteins expressed in the periplasm of glycosylation-competent E. coli cells. With this "glycosylation tag," a clear difference was observed in the glycosylation patterns found on periplasmic proteins depending on their mode of inner membrane translocation (i.e., Sec, signal recognition particle [SRP], or twin-arginine translocation [Tat] export), indicating that the mode of protein export can influence N-glycosylation efficiency. We also established that engineered substrate proteins targeted to environments beyond the periplasm, such as the outer membrane, the membrane vesicles, and the extracellular medium, could serve as substrates for N-linked glycosylation. Taken together, our results demonstrate that the C. jejuni N-glycosylation machinery is compatible with distinct secretory mechanisms in E. coli, effectively expanding the N-linked glycome of recombinant E. coli. Moreover, this simple glycosylation tag strategy expands the glycoengineering toolbox and opens the door to bacterial synthesis of a wide array of recombinant glycoprotein conjugates.  相似文献   

11.
N-linked protein glycosylation was originally thought to be specific to eukaryotes, but evidence of this post-translational modification has now been discovered across all domains of life: Eucarya, Bacteria, and Archaea. In all cases, the glycans are first assembled in a step-wise manner on a polyisoprenoid carrier lipid. At some stage of lipid-linked oligosaccharide synthesis, the glycan is flipped across a membrane. Subsequently, the completed glycan is transferred to specific asparagine residues on the protein of interest. Interestingly, though the N-glycosylation pathway seems to be conserved, the biosynthetic pathways of the polyisoprenoid carriers, the specific structures of the carriers, and the glycan residues added to the carriers vary widely. In this review we will elucidate how organisms in each basic domain of life synthesize the polyisoprenoids that they utilize for N-linked glycosylation and briefly discuss the subsequent modifications of the lipid to generate a lipid-linked oligosaccharide.  相似文献   

12.
Asparagine-linked protein glycosylation is a prevalent protein modification reaction in eukaryotic systems. This process involves the co-translational transfer of a pre-assembled tetradecasaccharide from a dolichyl-pyrophosphate donor to the asparagine side chain of nascent proteins at the endoplasmic reticulum (ER) membrane. Recently, the first such system of N-linked glycosylation was discovered in the Gram-negative bacterium, Campylobacter jejuni. Glycosylation in this organism involves the transfer of a heptasaccharide from an undecaprenyl-pyrophosphate donor to the asparagine side chain of proteins at the bacterial periplasmic membrane. Here we provide a detailed comparison of the machinery involved in the N-linked glycosylation systems of eukaryotic organisms, exemplified by the yeast Saccharomyces cerevisiae, with that of the bacterial system in C. jejuni. The two systems display significant similarities and the relative simplicity of the bacterial glycosylation process could provide a model system that can be used to decipher the complex eukaryotic glycosylation machinery.  相似文献   

13.
Larkin A  Imperiali B 《Biochemistry》2011,50(21):4411-4426
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.  相似文献   

14.
Campylobacter is an asaccharolytic microorganism which uses amino acids as a source of carbon and energy. CjaC/HisJ is a ligand-binding protein, a component of the ABC transport system. Campylobacter CjaC/HisJ is post-translationally modified by glycosylation. The number of glycosylation motifs present in the CjaC protein is species-specific. C. coli CjaC has two and C. jejuni one motif (E/DXNYS/T) which serves as a glycan acceptor. Although the two C. coli CjaC motifs have identical amino-acid sequences they are not glycosylated with the same efficiency. The efficacy of CjaC glycosylation in Escherichia coli containing the Campylobacter pgl locus is also rather low compared to that observed in the native host. The CjaC localization is host-dependent. Despite being a lipoprotein, CjaC is recovered in E. coli from the periplasmic space whereas in Campylobacter it is anchored to the inner membrane.  相似文献   

15.
In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.  相似文献   

16.
The Campylobacter coli 72Dz/92 cjaA gene (orthologue of cj0982c of C. jejuni NCTC 11168) product is a highly immunogenic, amino acid-binding protein. CjaA was palmitic acid-modified when processed in E. coli. In addition, site-directed mutagenesis of the Cys residue of the LAAC motif of its signal sequence confirmed that CjaA is a lipoprotein when processed in Campylobacter. Localization of the protein appeared to be host dependent. In Campylobacter, CjaA was recovered mainly as an inner-membrane protein, whereas in E. coli most of the protein was present in the periplasmic space. Interestingly, antiserum raised against Campylobacter glycine-extracted material also recognized CjaA produced by Campylobacter and Escherichia coli, indicating that at least part of the protein may be surface exposed. Site-directed mutagenesis of the Asn residues of two putative N-linked glycosylation sites (NIS and NFT) showed that CjaA is glycosylated and that only the first N-X-S/T sequeon serves as a glycan acceptor.  相似文献   

17.
Olivier NB  Chen MM  Behr JR  Imperiali B 《Biochemistry》2006,45(45):13659-13669
In Campylobacter jejuni 2,4-diacetamido-2,4,6-trideoxy-alpha-d-glucopyranose, termed N,N'-diacetylbacillosamine (Bac2,4diNAc), is the first carbohydrate in the glycoprotein N-linked heptasaccharide. With uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) as a starting point, two enzymes of the general protein glycosylation (Pgl) pathway in C. jejuni (PglF and PglE) have recently been shown to modify this sugar nucleotide to form UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-d-glycopyranose (UDP-4-amino-sugar) [Schoenhofen, I. C., et al. (2006) J. Biol. Chem. 281, 723-732]. PglD has been proposed to catalyze the final step in N,N'-diacetylbacillosamine synthesis by N-acetylation of the UDP-4-amino-sugar at the C4 position. We have cloned, overexpressed, and purified PglD from the pgl locus of C. jejuni NCTC 11168 and identified it as the acetyltransferase that modifies the UDP-4-amino-sugar to form UDP-N,N'-diacetylbacillosamine, utilizing acetyl-coenzyme A as the acetyl group donor. The UDP-N,N'-diacetylbacillosamine product was purified from the reaction by reverse phase C18 HPLC and the structure determined by NMR analysis. Additionally, the full-length PglF was overexpressed and purified in the presence of detergent as a GST fusion protein, allowing for derivation of kinetic parameters. We found that the UDP-4-amino-sugar was readily synthesized from UDP-GlcNAc in a coupled reaction using PglF and PglE. We also demonstrate the in vitro biosynthesis of the complete heptasaccharide lipid-linked donor by coupling the action of eight enzymes (PglF, PglE, PglD, PglC, PglA, PglJ, PglH, and PglI) in the Pgl pathway in a single reaction vessel.  相似文献   

18.
In the majority of congenital disorders of glycosylation, the assembly of the glycan precursor GlcNAc2Man9Glc3 on the polyprenol carrier dolichyl-pyrophosphate is compromised. Because N-linked glycosylation is essential to life, most types of congenital disorders of glycosylation represent partial losses of enzymatic activity. Consequently, increased availability of substrates along the glycosylation pathway can be beneficial to increase product formation by the compromised enzymes. Recently, we showed that increased dolichol availability and improved N-linked glycosylation can be achieved by inhibition of squalene biosynthesis. This review summarizes the current knowledge on the biosynthesis of dolichol-linked glycans with respect to deficiencies in N-linked glycosylation. Additionally, perspectives on therapeutic treatments targeting dolichol and dolichol-linked glycan biosynthesis are examined.  相似文献   

19.
Bacterial protein glycosylation systems from varying species have been functionally reconstituted in Escherichia coli. Both N- and O-linked glycosylation pathways, in which the glycans are first assembled onto lipid carriers and subsequently transferred to acceptor proteins by an oligosaccharyltransferase (OTase), have been documented in bacteria. The identification and characterization of novel OTases with different properties may provide new tools for engineering glycoproteins of biotechnological interest. In the case of OTases involved in O-glycosylation (O-OTases), there is very low sequence homology between those from different bacterial species. The Wzy_C signature domain common to these enzymes is also present in WaaL ligases; enzymes involved in lipopolysaccharide biosynthesis. Therefore, the identification of O-OTases using solely bioinformatic methods is problematic. The hypothetical proteins BTH_I0650 from Burkholderia thailandensis E264 and VC0393 from Vibrio cholerae N16961 contain the Wzy_C domain. In this work, we demonstrate that both proteins have O-OTase activity and renamed them PglL(Bt) and PglL(Vc), respectively, similar to the Neisseria meningitidis counterpart (PglL(Nm)). In E. coli, PglL(Bt) and PglL(Vc) display relaxed glycan and protein specificity. However, effective glycosylation depends upon a specific combination of the protein acceptor, glycan and O-OTase analyzed. This knowledge has important implications in the design of glycoconjugates and provides novel tools for use in glycoengineering applications. The codification of enzymatically active O-OTase in the genomes of members of the Vibrio and Burkholderia genera suggests the presence of still unknown O-glycoproteins in these organisms, which might have a role in bacterial physiology or pathogenesis.  相似文献   

20.
The glycosylphosphatidylinositol (GPI) anchor, potentially capable of generating a number of second messengers, such as diacylglycerol, phosphatidic acid, and inositol phosphate glycan, has been postulated to be involved in signal transduction in various cell types, including T-cells. We have identified a panel of T-cell hybridoma mutants that are defective at various steps of GPI anchor biosynthesis. Since they were derived from a functional T-T hybridoma, we were able to determine the precise role of the GPI anchor in T-cell activation. Two mutants were chosen for this analysis. The first mutant is defective at the first step of GPI anchor biosynthesis, i.e. in the transfer of N-acetylglucosamine to a phosphatidylinositol acceptor. Thus, it cannot form any GPI precursors or GPI-like compounds. Interestingly, this mutant can be activated by antigen, superantigen, and concanavalin A in a manner comparable to the wild-type hybridoma. These data strongly suggest that the GPI anchor, its precursor, or its potential cleavage product, inositol phosphate glycan, is not required for the early phase of T-cell activation. The second mutant is able to synthesize the first two GPI precursors, but is not able to add mannose residues to them due to a deficiency in dolichol-phosphate-mannose (Dol-P-Man) biosynthesis. Unexpectedly, all of the Dol-P-Man mutants are defective in activation by antigen, suprantigen, and concanavalin A despite normal T-cell receptor expression. Here, we show that the activation defect was due to a pleiotropic glycosylation abnormality because Dol-P-Man is required for both GPI anchor and N-linked oligosaccharide biosynthesis. When the yeast Dol-P-Man synthase gene was stably transfected into the mutants, full expression of surface GPI-anchored proteins was restored. However, N-linked glycosylation was either partially or completely corrected in different transfectants. Reconstitution of activation defects correlates well with the status of N-linked glycosylation, but not with the expression of GPI-anchored proteins. These results thus reveal an unexpected role of N-linked glycosylation in T-cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号