首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.

A novel gene (ANK58566) encoding a cold-active α-amylase was cloned from marine bacterium Bacillus sp. dsh19-1 (CCTCC AB 2015426), and the protein was expressed in Escherichia coli. The gene had a length of 1302 bp and encoded an α-amylase of 433 amino acids with an estimated molecular mass of 50.1 kDa. The recombinant α-amylase (AmyD-1) showed maximum activity at 20 °C and pH 6.0, and retained about 35.7% of activity at 4 °C. The AmyD-1 activity was stimulated by Ca2+ and Na+. However, the chelating agent, EDTA, inactivated the enzyme. Moreover, AmyD-1 displayed extreme salt tolerance, with the highest activity in the presence of 2.0 M NaCl and 60.5% of activity in 5.0 M NaCl. The Km, Vmax and kcat of AmyD-1 in 2.0 M NaCl were 2.8 mg ml−1, 21.8 mg ml−1 min−1 and 933.5 s−1, respectively, at 20 °C and pH 6.0 with soluble starch as substrate. MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry) revealed that the end products of starch hydrolysis by AmyD-1 were glucose, maltose, maltotriose, maltotetraose, and malt oligosaccharides. Thus, AmyD-1 is one of the very few α-amylases that can tolerate low temperatures and high salt concentrations, which makes it to be a potential candidate for research in basic and applied microbiology.

  相似文献   

2.
A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205?kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0–12.0) and retained 96% of its original activity at low temperatures (10–40°C) for 24?hr. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba2+, Ca2+, Na+, Zn2+, Mn2+, H2O2, and Triton X-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65, and 42%, respectively). N8 α-amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α-amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.  相似文献   

3.
κ-Carrageenases exhibit apparent distinctions in gene sequence, molecular weight, enzyme properties, and posttranslational processes. In this study, a new κ-carrageenase gene named cgkZ was cloned from the marine bacterium Zobellia sp. ZM-2. The gene comprised an open reading frame of 1,638 bp and encoded 545 amino acids. The natural signal peptide of κ-carrageenase was used successfully for the secretory production of the recombinant enzyme in Escherichia coli. A posttranslational process that removes an amino acid sequence of about 20 kDa from the C-terminal end of κ-carrageenase was first discovered in E. coli. An increase in enzyme activity by 167.3 % in the presence of 5 mM DTT was discovered, and Na+ at a certain concentration range was positively correlated with enzyme activity. The κ-carrageenase production of E. coli was 9.0 times higher than that of ZM-2. These results indicate the potential use of the enzyme in the biotechnological industry.  相似文献   

4.
An extracellular α-amylase produced by the thermophilic bacterium Thermus filiformis Ork A2 was purified from cell-free culture supernatant by ion exchange chromatography. The molecular mass was estimated to be 60 000 Da by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was rich in both basic and hydrophobic amino acids, presenting the following NH2-terminal amino acid sequence: Thr-Ala-Asp-Leu-Ile-Val-Lys-Ile-Asn-Phe. Amylolytic activity on soluble starch was optimal at pH 5.5–6.0 and 95°C, and the enzyme was stable in the pH range of 4.0–8.0. Calcium enhanced thermostability at temperatures above 80°C, increasing the half-life of activity to more than 8 h at 85°C, 80 min at 90°C, and 19 min at 95°C. Ethylenediaminetetraacetic acid (EDTA) inhibited amylase activity, the inhibition being reversed by the addition of calcium or strontium ions. The α-amylase was also inhibited by copper and mercuric ions, and p-chloromercuribenzoic acid, the latter being reversed in the presence of dithiothreitol. Dithiothreitol and β-mercaptoethanol activated the enzyme. The α-amylase exhibited Michaelis-Menten kinetics for starch, with a K m of 5.0 mg·ml−1 and k cat/K m of 5.2 × 105 ml·mg−1 s−1. Similar values were obtained for amylose, amylopectin, and glycogen. The hydrolysis pattern was similar for maltooligosaccharides and polysaccharides, with maltose being the major hydrolysis product. Glucose and maltotriose were generated as secondary products, although glucose was produced in high levels after a 6-h digestion. To our knowledge this is the first report of the characterization of an α-amylase from a strain of the genus Thermus. Received: June 2, 1997 / Accepted: September 16, 1997  相似文献   

5.
A putative -L-arabinofuranosidase (AFase) gene belonging to family 51 of glycosyl hydrolases of a hyperthermophilic bacterium Thermotoga maritima MSB8 was cloned, sequenced, and overexpressed in Escherichia coli. The recombinant protein (Tm-AFase) was purified to apparent homogeneity by heat treatment (80°C, 30 min), followed by hydrophobic interaction, anion-exchange, and gel permeation column chromatography. Tm-AFase had a molecular mass of 55,284 Da on matrix assisted laser desorption ionization time-of-flight mass spectrometry and ~332 kDa on gel permeation column chromatography. Therefore, Tm-AFase comprised six identical subunits as in the case of homologous AFase from Geobacillus stearothermophilus. Regarding substrate specificity, Tm-AFase was active with p-nitrophenyl -L-arabinofuranoside but not with p-nitrophenyl -L-arabinopyranoside. Regarding polysaccharides, Tm-AFase hydrolyzed arabinan and debranched arabinan but not arabinoxylan, arabinogalactan, and carboxymethyl cellulose. Tm-AFase was extremely thermophilic, displaying an optimal reaction temperature of 90°C in a 10 min assay. When Tm-AFase was heated at 90°C, no loss of activity was observed for at least 24 h. At 100°C, the activity dropped to ~50% in 20 min; thereafter, inactivation occurred very slowly exhibiting a half-life of ~2.7 h, characterizing the enzyme to be the most thermophilic AFase reported thus far.  相似文献   

6.
7.
Aiming at the isolation of novel enzymes from previously uncultured thermophilic microorganisms, a metagenome library was constructed from DNA isolated from a pilot-plant biogas reactor operating at 55 °C. The library was screened for starch-degrading enzymes, and one active clone was found. An open reading frame of 1,461 bp encoding an α-amylase from an uncultured organism was identified. The amy13A gene was cloned in Escherichia coli, resulting in high-level expression of the recombinant amylase. The novel enzyme Amy13A showed the highest sequence identity (75 %) to α-amylases from Petrotoga mobilis and Halothermothrix orenii. Amy13A is highly thermoactive, exhibiting optimal activity at 80 °C, and it is also highly salt-tolerant, being active in 25 % (w/v) NaCl. Amy13A is one of the few enzymes that tolerate high concentrations of salt and elevated temperatures, making it a potential candidate for starch processing under extreme conditions.  相似文献   

8.

Purpose of work

The purpose of this study is to report a ι-carrageenase which degrades ι-carrageenan yielding neo-ι-carratetraose as the main product in the absence of NaCl. The gene for a new ι-carrageenase, CgiB_Ce, from Cellulophaga sp. QY3 was cloned and sequenced. It comprised an ORF of 1,386 bp encoding for a protein of 461 amino acid residues. From its sequence analysis, CgiB_Ce is a new member of GH family 82 and shared the highest identity of 32 % in amino acids with ι-carrageenase CgiA2 from Zobellia galactanovorans indicating that it is a hitherto uncharacterized protein. The recombinant CgiB_Ce had maximum specific activity (1,870 U/mg) at 45 °C and pH 6.5. It was stable between pH 6.0–9.6 and below 40 °C. Although its activity was enhanced by NaCl, the enzyme was active in the absence of NaCl. CgiB_Ce is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product (more than 80 % of the total product).  相似文献   

9.
《Process Biochemistry》2010,45(5):694-699
An extracellular halophilic α-amylase from Nesterenkonia sp. strain F was purified to homogeneity by 80% ethanol precipitation, Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography, with a 10.8-fold increase in specific activity. The molecular mass of the amylase was estimated to be 100 kDa and 106 kDa by SDS–PAGE and gel filtration chromatography, respectively. The enzyme showed maximal activity at pH 7.5 and 45 °C. The amylase was active in a wide range of salt concentrations (0–4 M) with its maximum activity at 0.5 M NaCl or 1 M KCl and was stable at the salts concentrations between 1 M and 4 M. Fe3+, Cu2+, Zn2+ and Al3+ strongly inhibited the enzyme, whereas Ca2+ stimulated the amylase activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. The enzyme showed remarkable stability towards 0.5% SDS and sarcosyl, and 2% each of Triton X-100, Tween 80 and Tween 20. Km value of the amylase for soluble starch was 4.5 mg/ml. The amylase hydrolyzed 38% of raw wheat starch and 20% of corn starch in a period of 48 h. The major products of soluble starch hydrolysis were maltose, maltotriose and maltotetraose, indicating an α-amylase activity.  相似文献   

10.
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.  相似文献   

11.
A moderately halophilic bacterium, Kocuria varians, was found to produce active α-amylase (K. varians α-amylase (KVA)). We have observed at least six different forms of α-amylase secreted by this bacterium into the culture medium. Characterization of these KVA forms and cloning of the corresponding gene revealed that KVA comprises pre-pro-precursor form of α-amylase catalytic domain followed by the tandem repeats, which show high similarity to each other and to the starch binding domain (SBD) of other α-amylases. The observed six forms were most likely derived by various processing of the protein product. Recombinant KVA protein was successfully expressed in Escherichia coli as a fusion protein and was purified with affinity chromatography after cleavage from fusion partner. The highly acidic amino acid composition of KVA and the highly negative electrostatic potential surface map of the modeled structure strongly suggested its halophilic nature. Indeed, KVA showed distinct salt- and time-dependent thermal reversibility: when α-amylase was heat denatured at 85°C for 3 min in the presence of 2 M NaCl, the activity was recovered upon incubation on ice (50% recovery after 15 min incubation). Conversely, KVA denatured in 0.1 M NaCl was not refolded at all, even after prolonged incubation. KVA activity was inhibited by proteinaceous α-amylase inhibitor from Streptomyces nitrosporeus, which had been implicated to inhibit only animal α-amylases. KVA with putative SBD regions was found to digest raw starch.  相似文献   

12.
13.
A genomic library of Bifidobacterium bifidum (NCIMB 41171) DNA was constructed in Escherichia coli RA11r (melAB+) and one α-galactosidase encoding gene was isolated. Conceptual translation combined with insertional mutagenesis analysis indicated an open reading frame (ORF) of 759 amino acid (aa) residues encoding an α-galactosidase (named as MelA) of 82.8 kDa. Partial purification and characterisation showed that the enzyme had an apparent native molecular mass of ≈243 kDa and a subunit size of ≈85 kDa. The enzyme belongs to glycosyl hydrolases 36 family with high aa sequence similarities (≈73%) to other known α-galactosidases of bifidobacterial origin. Under optimum pH conditions for activity (pH 6.0) and high melibiose concentration (40% w/v), the enzyme was able to form oligosaccharides with degree of polymerisation (DP) ≥3 at higher concentration than DP = 2, with a total yield of 20.5% (w/w).  相似文献   

14.
15.
16.
A new plasmid pCASE1 was isolated from Gram-positive Corynebacterium casei JCM 12072. It comprised a 2.4-kb nucleotide sequence with three ORFs, two of which were indispensable for autonomous replication in Corynebacterium glutamicum. Homology search identified these two ORFs as repA and repB, areas coding proteins involved in plasmid replication. repA sequence showed high similarity to theta-replicating Escherichia coli ColE2-P9 plasmids and even higher similarity to plasmids derived from Gram-positive bacteria belonging to a subfamily of this ColE2-P9 group. An E. coliC. glutamicum shuttle vector was constructed with pCASE1 fragment including repA and repB to transform C. glutamicum and showed compatibility with corynebacterial plasmids from different plasmid families. The copy number of the shuttle vector in C. glutamicum was 13 and the vector showed stability for 102 generations with no selective pressure.  相似文献   

17.
A novel β-galactosidase gene, zd410, was isolated by screening a soil metagenomic library. Sequence analysis revealed that zd410 encodes a protein of 672 amino acids with a predicted molecular weight of 78.6 kDa. The recombinant ZD410 was expressed and purified in Pichia pastoris, with a yield of ca. 300 mg from 1 L culture. The purified enzyme displayed optimal activity at 38°C and pH 7.0. Given that the enzyme had 54% of the maximal activity at 20°C and 11% of the maximal activity at close to 0°C, ZD410 was regarded as a cold-adapted β-galactosidase. ZD410 displays high enzymatic activity for its synthetic substrate-ONPG (o-nitrophenyl-β-d-galactopyranoside, 243 U/mg) and its natural substrate-lactose (25.4 U/mg), while its activity was slightly stimulated by addition of Na+, K+, or Ca2+ at low concentrations. ZD410 is a good candidate of β-galactosidases for food industry after further study.  相似文献   

18.
《Process Biochemistry》2014,49(12):2122-2133
A gene encoding a novel β-d-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. 32cB was isolated, cloned and expressed in Escherichia coli. The active form of recombinant β-d-galactosidase consists of two subunits with a combined molecular weight of approximately 257 kDa. The enzyme's maximum activity towards o-nitrophenyl-β-d-galactopyranoside was determined as occurring at 28 °C and pH 8.0. However, it exhibited 42% of maximum activity at 10 °C and was capable of hydrolyzing both lactose and o-nitrophenyl-β-d-galactopyranoside at that temperature, with Km values of 1.52 and 16.56 mM, and kcat values 30.55 and 31.84 s−1, respectively. Two units of the enzyme hydrolyzed 90% of the lactose in 1 mL of milk at 10 °C in 24 h. The transglycosylation activity of Arthrobacter sp. 32cB β-d-galactosidase was also examined. It synthesized galactooligosaccharides in a temperature range from 10 to 30 °C. Moreover, it catalyzed the synthesis of heterooligosaccharides such as lactulose, galactosyl-xylose and galactosyl-arabinose, alkyl glycosides, and glycosylated salicin from lactose and the appropriate acceptor at 30 °C. The properties of Arthrobacter sp. 32cB β-d-galactosidase make it a candidate for use in the industrial removal of lactose from milk and a promising tool for the glycosylation of various acceptors, especially those which are thermosensitive.  相似文献   

19.
This study reports the purification and biochemical characterization of a novel maltotetraose-forming-α-amylase from Pseudomonas stutzeri AS22, designated PSA. The P. stutzeri α-amylase (PSA) was purified from the culture supernatant to homogeneity by Sepharose mono Q anion exchange chromatography, ultrafiltration and Sephadex G-100 gel filtration, with a 37.32-fold increase in specific activity, and 31% recovery. PSA showed a molecular weight of approximately 57 kDa by SDS-PAGE. The N-terminal amino acid sequence of the first 7 amino acids was DQAGKSP. This enzyme exhibited maximum activity at pH 8.0 and 55°C, performed stably over a broad range of pH 5.0 ≈ 12.0, but rapidly lost activity above 50°C. Both potato starch and Ca2+ ions have a protective effect on the thermal stability of PSA. The enzyme activity was inhibited by Hg2+, Mn2+, Cd2+, Cu2+, and Co2+, and enhanced by Ba2+. PSA belonged to the EDTA-sensitive α-amylase. The purified enzyme showed high stability towards surfactants (Tween 20, Tween 80 and Triton X-100), and oxidizing agents, such as sodium per borate and H2O2. In addition, PSA showed excellent compatibility with a wide range of commercial solid and liquid detergents at 30°C, suggesting potential application in the detergent industry. Maltotetraose was the specific end product obtained after hydrolysis of starch by the enzyme for an extended period of time, and was not further degraded.  相似文献   

20.
Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular ??-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. ??-xylosidase is a glycoprotein (39?% carbohydrate content) and has a molecular mass of 137?kDa by SDS-PAGE, with optimal temperature and pH at 70?°C and 3.0?C5.5, respectively. ??-xylosidase was stable in acidic pH (3.0?C6.0) and 70?°C for 1?h. The enzyme was activated by 5?mM MnCl2 (28?%) and MgCl2 (20?%) salts. The ??-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-??-d-xylopyranoside, exhibiting apparent Km and Vmax values of 0.66?mM and 39?U (mg protein)?1 respectively, and to a lesser extent p-nitrophenyl-??-d-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel ??-d-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by ??-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号