首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different bacteriophages, FE5-B1 and Z63-B1, active against strains of Lactobacillus fermentum were isolated from a sample of sour dough of a regional wheat bread. They showed different host specificities when tested against 58 strains of obligately heterofermentative lactic acid bacteria, as well as differences in adsorption and one-step growth kinetics. The burst size of FE5-B1 was about 100 pfu cell−1. This phage belonged to the A1 morphotype of Myoviridae family, having an icosahedral head (83 nm diam.) and a sheathed contractile tail (170 nm in length). The phage consisted of five major structural proteins and had a genome of 86 kbp. Z63-B1 showed a burst size of 10 pfu cell−1 and belonged to the B1 morphotype or Siphoviridae family. Z63-B1 had an isometric head (60 nm diam.) and a non-contractile tail (160 nm in length), with eight major different structural proteins and a genome of 32 kbp.  相似文献   

2.
BackgroundMethicillin resistant Staphylococcus aureus (MRSA) is a pathogen to humans causing life-threatening infections. MRSA have the capability to grow resistance to many antibiotics, and phage therapy is one treatment option for this infection.ObjectivesThe aim of the present study was to isolate and characterize the lytic bacteriophages specific to MRSA from domestic sewage water at a tertiary care hospital in Egypt.MethodsThirty MRSA strains were isolated from different clinical samples admitted to the microbiology lab at Theodor Bilharz Research institute (TBRI) hospital, Giza, Egypt. They were confirmed to be MRSA through phenotypic detection and conventional PCR for mecA gene. They were used for the isolation of phages from sewage water of TBRI hospital. Plaque assay was applied to purify and quantify the titer of the isolated phages. The host range of the isolated phages was detected using the spot test assay. The morphology of phages was confirmed using transmission electron microscope (TEM). Digestion of DNA extracted from phages with endonuclease enzymes including EcoRI and SmaI was performed. SDS-PAGE was performed to analyze MRSA specific phage proteins. As a positive control prophages were isolated from a mitomycin C (MitC) treated culture of S. aureus strain ATCC25923. Further characterization using conventional polymerase chain reaction (PCR) was used to select three known Staphylophages by detecting the endolysin gene of phage K, the polymerase gene of phage 44AHJD, and the minor tail gene of phage P68.ResultsIsolated phages in this research displayed a wide host range against MRSA using the spot test, out of thirty tested MRSA isolates 24 were sensitive and got lysed (80%). The titer of the phages was estimated to be 1.04 × 106 pfu/ml using plaque test. Identification of head and tail morphology of the phages was achieved using TEM and they were designated to tailed phages of order Caudovirales, they composed an icosahedral capsid. Prophages were isolated through MitC induction. DNA of phages was digested by endonuclease enzymes. Conventional PCR yielded 341 bp of phage K endolysin gene and phage P68 minor tail protein gene 501 bp. Protein analysis using SDS-PAGE showed 4 proteins of sizes between 42 kDa and 140 kDa.ConclusionPhages isolated here are alike to others mentioned in previous studies. The high broad host range of the isolated phages is promising to control MRSA and can be in the future commercially suitable for treatment as lysate preparations. Animal models of phage-bacterial interaction will be our next step that may help in resolving the multidrug resistant crisis of MRSA in Egypt.  相似文献   

3.
We present an alternative bioprocess for bacteriophages involving room temperature coprecipitation of an aqueous mixture of phage (Siphoviridae) and a crystallizable carrier (glutamine or glycine) in excess of water miscible organic solvent (isopropanol or isobutanol). The resultant suspension of phage-coated microcrystals can be harvested by filtration and the residual solvent removed rapidly by air-drying at a relative humidity of 75%. Albumin or trehalose added at 5% w/w of the crystalline carrier provide for better stabilization of the phage during co-precipitation. Free-flowing dry powders generated from an aqueous solution of phage (~13 log(10) pfu/mL) can be reconstituted in the same aqueous volume to a phage titer of almost 10 log(10) pfu/mL; high enough to permit subsequent formulation steps following bioprocessing. The phage-coated microcrystals remain partially stable at room temperature for at least one month, which compares favorably with phage immobilized into polyester microcarriers or lyophilized with excipient (1-5% polyethylene glycol 6000 or 0.1-0.5 M sucrose). We anticipate that this bioprocessing technique will have application to other phage families as required for the development of phage therapies.  相似文献   

4.
In this study, a method combining Raman spectroscopy with chemometric analysis was developed for detection of phage presence in raw milk and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages which are among the main phages causing problems in dairy industry. For this purpose, S. thermophilus and L. bulgaricus phages were added into raw milk separately, and then some pretreatments such as fat separation, removal of casein, and filtration were applied to the raw milk samples. Raman spectra of the samples were collected and then analyzed using principal component analysis in order to discriminate these phages in raw milk. In the next step, dilutions of S. thermophilus phages in pretreated raw milk were prepared, and Raman spectra were collected. These spectra were analyzed by using partial least squares method to quantify phages in low titer. Consequently, it has been demonstrated that S. thermophilus and L. bulgaricus phages, which have titers sufficient to fail the fermentation (~?107 pfu/mL) and have lower titers (102–103 pfu/mL), could be discriminated from antibiotic and each other. Additionally, low concentrations of S. thermophilus phages (102 pfu/mL) could be detected through Raman spectroscopy with a short analysis time (60 min) and high coefficient of determination (R2) values for both calibration (0.985) and validation (0.906) with a root mean square error of calibration of 70.54 and root mean square error of prediction of 165.47. However, a lower success was achieved with L. bulgaricus phages and the obtained coefficient of determination values were not sufficiently high (0.649).  相似文献   

5.
Listeria monocytogenes is a food-borne pathogen which causes listeriosis and is difficult to eradicate from seafood processing environments; therefore, more effective control methods need to be developed. This study investigated the effectiveness of three bacteriophages (LiMN4L, LiMN4p and LiMN17), individually or as a three-phage cocktail at ≈9 log10 PFU/ml, in the lysis of three seafood-borne L. monocytogenes strains (19CO9, 19DO3 and 19EO3) adhered to a fish broth layer on stainless steel coupon (FBSSC) and clean stainless steel coupon (SSC), in 7-day biofilm, and dislodged biofilm cells at 15 ± 1 °C. Single phage treatments (LiMN4L, LiMN4p or LiMN17) decreased bacterial cells adhered to FBSSC and SSC by ≈3–4.5 log units. Phage cocktail reduced the cells on both surfaces (≈3.8–4.5 and 4.6–5.4 log10 CFU/cm2, respectively), to less than detectable levels after ≈75 min (detection limit = 0.9 log10 CFU/cm2). The phage cocktail at ≈5.8, 6.5 and 7.5 log10 PFU/cm2 eliminated Listeria contamination (≈1.5–1.7 log10 CFU/cm2) on SSC in ≈15 min. One-hour phage treatments (LiMN4p, LiMN4L and cocktail) in three consecutive applications resulted in a decrease of 7-day L. monocytogenes biofilms (≈4 log10 CFU/cm2) by ≈2–3 log units. Single phage treatments reduced dislodged biofilm cells of each L. monocytogenes strain by ≈5 log10 CFU/ml in 1 h. The three phages were effective in controlling L. monocytogenes on stainless steel either clean or soiled with fish proteins which is likely to occur in seafood processing environments. Phages were more effective on biofilm cells dislodged from the surface compared with undisturbed biofilm cells. Therefore, for short-term phage treatments of biofilm it should be considered that some disruption of the biofilm cells from the surface prior to phage application will be required.  相似文献   

6.
Nucleic acids, bacteriophages, phage capsids, and a DNA-capsid complex have been centrifuged to an equilibrium buoyant density in sodium iothalamate density gradients. Nucleic acids have comparatively high hydrations and are less dense than proteins in these gradients. Sodium iothalamate gradients can be used to separate DNA from RNA, single-chain DNA from double-chain DNA and to separate bacteriophage T7 and λ deletion mutants from the respective wild-type phage.The DNA packaged in bacteriophage T7 appears to be less hydrated than free DNA in sodium iothalamate gradients. There is evidence that the hydration of DNA packaged in phage T7 is restricted by the volume of the phage head. The total volume of phage T7 was estimated to be 1.32 × 10−16 ml. The volume available to package phage T7 DNA was estimated to be 2.2 times the volume of the B form of T7 DNA.  相似文献   

7.
Characterization of bacteriophages to be used prophylactically or therapeutically is mandatory, as use of uncharacterized bacteriophages is considered as one of the major reasons of failure of phage therapy in preantibiotic era. In the present study, one lytic bacteriophage, KPO1K2, specific for Klebsiella pneumoniae B5055, with broad host range was selected for characterization. As shown by TEM, morphologically KPO1K2 possessed icosahedral head with pentagonal nature with apex to apex head diameter of about 39 nm. Presence of short noncontractile tail (10 nm) suggested its inclusion into family Podoviridae with a designation of T7-like lytic bacteriophage. The phage growth cycle with a latent period of 15 min and a burst size of approximately 140 plaque forming units per infected cell as well as a genome of 42 kbps and structural protein pattern of this bacteriophage further confirmed its T7-like characteristics. Phage was stable over a wide pH range of 4–11 and demonstrated maximum activity at 37°C. After injection into mice, at 6 h, a high phage titer was seen in blood as well as in kidney and urinary bladder, though titers in kidney and urinary bladder were higher as compared to blood. Phage got cleared completely in 36 h from blood while from kidneys and urinary bladder its clearance was delayed. We propose the use of this characterized phage, KPO1K2, as a prophylactic/therapeutic agent especially for the treatment of catheter associated UTI caused by Klebsiella pneumoniae.  相似文献   

8.
The increasing emergence of antibiotic-resistant bacteria has produced a growing interest among scientists in bacteriophages as alternative antimicrobial agents. This article reports a lytic phage against an antibiotic-resistant strain of Pseudomonas aeruginosa. Phage BVPaP-3 is a member of the Podoviridae family and morphologically similar to the T7-like phage gh-1. The phage has a hexagonal head of 58–59 nm in diameter and a short tail of 10 × 8 nm. It is stable at a wide range of pH (6–10) and temperatures (4–40°C). Its optimal growth temperature is 37°C and the adsorption rate constant is 1.19 × 10−9. Latent and eclipse periods are 20 and 15 min, respectively, and the burst size is 44 after 35 min at 37°C. The phage has a DNA size of 41.31 kb and a proteome of 11 proteins. The major protein is 33 kDa in size.  相似文献   

9.
目的:分离并鉴定一株多耐药鲍曼不动杆菌噬菌体,对其生物特性进行研究,为治疗多耐药鲍曼不动杆菌感染提供新的方法和实验依据。方法:以一株多耐药不动杆菌AB6为宿主菌,从医院废水中分离出噬菌体;用聚乙二醇6000对噬菌体进行浓缩和纯化,并就噬菌体的形态、一步生长曲线、裂解特性和不同保存条件对噬菌体活性的影响进行初步研究。结果:分离出一株噬菌体IME-AB6,电镜显示为肌尾噬菌体,其潜伏期为10 min,爆发期为40 min,爆发量160 pfu/cell;IME-AB6能迅速使菌液变清晰,温度灵敏性强,并且发现在4℃保存是一种方便高效的方法。结论:噬菌体IME-AB6是一株新的有独特特点的噬菌体,用聚乙二醇能很好地提高滴度,其潜伏期和爆发期短且杀菌效能强,性能稳定易保存,这对于噬菌体制剂的开发和耐药性鲍曼不动杆菌的防治具有潜在应用价值。  相似文献   

10.
Enterobacter sakazakii (Cronobacter spp.) is an opportunistic pathogen, which can cause rare, but life‐threatening infections in neonates and infants through feeding of a contaminated milk formula. We isolated 67 phages from environmental samples and tested their lytic host range on a representative collection of 40 E. sakazakii strains. A cocktail of five phages prevented the outgrowth of 35 out of 40 test strains in artificially contaminated infant formula. Two E. sakazakii phages represented prolate head Myoviridae. Molecular tests identified them as close relatives of Escherichia coli phage T4. The remaining three phages represented isometric head Myoviridae with large genome size of 140 and 200 kb, respectively, which belonged to two different DNA hybridization groups. A high dose of 108 pfu ml?1 of phage could effectively sterilize a broth contaminated with both high and low pathogen counts (106 and 102 cfu ml?1). In contrast, broth inoculated with 104 phage and 102 bacteria per ml first showed normal bacterial growth until reaching a cell titre of 105 cfu ml?1. Only when crossing this threshold, phage replication started, but it could not reduce the contamination level below 100 cfu ml?1. Phages could be produced with titres of 1010 pfu ml?1 in broth culture, but they were not stable upon freeze‐drying. Addition of trehalose or milk formula stabilized the phage preparation, which then showed excellent storage stability even at elevated temperature.  相似文献   

11.
The complex cellulolytic microbial community of the horse intestines is a convenient model for studying the ecology of bacteriophages in natural habitats. Unlike the rumen of the ruminants, this community of the equine large intestine is not subjected to digestion. The inner conditions of the horse gut are much more stable in comparison to other mammals, due to the fact that the horse diet remains almost unchanged and the intervals between food consumption and defecation are much shorter than the whole digestive cycle. The results of preliminary analysis of the structure and dynamics of the viral community of horse feces, which combines direct and culture methods, are presented. In horse fecal samples, we detected more than 60 morphologically distinct phage types, the majority of which were present as a single phage particle. This indicates that the community includes no less than several hundreds of phage types. Some phage types dominated and constituted 5–11% of the total particle count each. The most numerous phage type had an unusual morphology: the tails of its members were extremely long (about 700 nm), flexible, and irretractable, while their heads were 100 nm in diameter. Several other phage types with similar but not identical properties were detected. The total coliphage plaque count of the samples taken from three animals revealed significant fluctuations in the phage titers. During the observation time, the maximum titer ranged within four orders of magnitude (103-107 plaque forming units (PFU)/g); the minimum titer ranged within two orders of magnitude. The samples contained two to five morphologically distinct and potentially competitive coliphage types, specific to a single Escherichia coli strain.  相似文献   

12.
We describe the aberrant phage multiplication of the triple conditional lethal mutant 43?(polymerase)· 30?(ligase)·46?(exonuclease) of bacteriophage T4D in which phage DNA replication is arrested but some late protein synthesis occurs (33). The nuclear disruption is indistinguishable from wild type. Forty-five empty small and empty large particles are assembled per cell when the multiplicity of infection (m.o.i.) is 100. This number corresponds closely to the 38 phage equivalents of cleaved major head protein determined biochemically. By reducing the m.o.i. the number of observable particles decreases, reaching 1–5 per cell at an m.o.i. of 5(+5). The total synthesis of phage related proteins is not significantly dependant on the m.o.i. The synthesis of late proteins is about 10% of that of wild type at high m.o.i. and decreases with the m.o.i. The different early and late proteins do not show the same relative proportions as in wild type and respond differently to an increased m.o.i. These and other results are discussed with respect to the role of phage DNA in prehead assembly and head maturation.  相似文献   

13.
Murein hydrolases appear to be widespread in the virions of bacteriophages infecting Gram‐positive or Gram‐negative bacteria. Muralytic activity has been found in virions of the majority of a diverse collection of phages. Where known, the enzyme is either part of a large protein or found associated with other structural components of the virion that limit enzyme activity. In most cases, the lack of genetic and structural characterization of the phage precludes making a definitive identification of the enzymatic protein species. However, three proteins with muralytic activity have been unequivocally identified. T7gp16 is a 144 kDa internal head protein that is ejected into the cell at the initiation of infection; its enzyme activity is required only when the cell wall is more highly cross‐linked. P22gp4 is part of the neck of the particle and is essential for infectivity. The activity associated with virions of Bacillus subtilis phage ø29 and its relatives lies in the terminal protein gp3. These studies lead to a general mechanism describing how phage genomes are transported across the bacterial cell wall.  相似文献   

14.
Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that “enhanced infection” is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.  相似文献   

15.
Acute enteric infections caused by salmonellas remain a major public health burden worldwide. Poultry, particularly chickens, are known to be the main reservoir for this zoonotic pathogen. Although some progress has been made in reducing Salmonella colonization of broiler chickens by using biosecurity and antimicrobials, it still remains a considerable problem. The use of host-specific bacteriophages as a biocontrol is one possible intervention by which Salmonella colonization could be reduced. A total of 232 Salmonella bacteriophages were isolated from poultry farms, abattoirs, and wastewater in 2004 and 2005. Three phages exhibiting the broadest host ranges against Salmonella enterica serotypes Enteritidis, Hadar, and Typhimurium were characterized further by determining their morphology and lytic activity in vitro. These phages were then administered in antacid suspension to birds experimentally colonized with specific Salmonella host strains. The first phage reduced S. enterica serotype Enteritidis cecal colonization by ≥4.2 log10 CFU within 24 h compared with controls. Administration of the second phage reduced S. enterica serotype Typhimurium by ≥2.19 log10 CFU within 24 h. The third bacteriophage was ineffective at reducing S. enterica serotype Hadar colonization. Bacteriophage resistance occurred at a frequency commensurate with the titer of phage being administered, with larger phage titers resulting in a greater proportion of resistant salmonellas. The selection of appropriate bacteriophages and optimization of both the timing and method of phage delivery are key factors in the successful phage-mediated control of salmonellas in broiler chickens.  相似文献   

16.
While screening for alternative antibiotics against multidrug-resistant Acinetobacter baumannii, we isolated a virulent A. baumannii bacteriophage Abp1. Transmission electron microscopy revealed that the phage had an icosahedral head with a short tail and should be classified as a member of the Podoviridae family. SDS-PAGE showed that Abp1 contained at least one major and nine minor proteins. In a single-step growth test, we demonstrated that Abp1 had a latent period of 10 min and a burst size of 350. Abp1 also had a relatively narrow host range. The entire genome was sequenced, and the final assembly yielded a 42,185 bp, linear, double-stranded DNA molecule with a G+C content of 39.15 % and containing 54 putative genes. Among these genes, 26 were functionally known, leaving 28 unknown putative genes. Abp1 is a new member of the phiKMV-like virus subgroup of the T7 group; its genome sequence is very similar to that of the A. baumannii phage phiAB1.  相似文献   

17.
Wang Y  Zhang X 《Gene》2008,421(1-2):61-66
Portal proteins, located asymmetrically at one of the twelve vertices of the capsid, play very important roles in viral DNA packaging. Compared with the well-studied portal proteins of bacteriophages infecting mesophilic bacteria, portal proteins of thermophilic bacteriophages from deep sea have not been characterized. In this investigation, a novel portal protein was identified from a deep-sea thermophilic bacteriophage GVE2 for the first time. The GVE2 portal protein (designated as VP411 protein) shared low similarity to known portal proteins from other species, but they showed high similarities in the predicted secondary structures, suggesting that they had the same function in viral DNA packaging. The Northern blot and Western bolt results demonstrated that the vp411 gene was expressed in the late stage of GVE2 infection, implying that it might be a viral late gene. As revealed by immuno-electron microscopy, the gold particles were observed in the junction between the phage head and the phage tail when the anti-VP411 IgG was used as the primary antibody, indicating that it had the location in the virion expected of a portal protein.  相似文献   

18.
19.
Five bacteriophages (Kpn5, Kpn12, Kpn13, Kpn17 and Kpn22), each having specificity against Klebsiella pneumoniae strain B5055, were isolated from sewage samples and characterized in terms of growth characteristics, genetic material, morphology and structural proteins. Adsorption rate as well as single step growth curve experiments showed variation among phages. Restriction enzyme digestion of DNA confirmed the presence of double stranded DNA as well as the heterogeneous nature of genetic material. RAPD-PCR was performed to further distinguish these closely related phages. Their genome fingerprint confirmed their diversity. Transmission electron microscopy, on the other hand, showed their morphological similarity; they were assigned to family Podoviridae, order Caudovirales on the basis of their head and tail morphology. Structural proteins resolved on SDS-PAGE showed the presence of similar major outer membrane proteins. The bacteriophages, belonging to Podoviridae family with short stumpy tails, were found to be nontoxic to mice. They showed maximum count in various organs at 6 h post inoculation, which persisted till 36 h. These phages thus have the potential to be used for phage therapy.  相似文献   

20.
Two bacteriophages isolated onEnterobacter cloacae (C2, C2F) and three isolated onErwinia herbicola (E3, E16P, E16B) were purified by D2O gradient centrifugation. Phage-containing fractions were negatively stained and examined by electron microscopy. Phages C2, C2F, E3, and E16P showed an elongated head 153×51 nm and a short noncontractile tail 12 nm long terminated by at least two short fibers. These phages correspond to the rate taxonomic group C3. Big capsomeres composing the phage head were evidenced when phage suspensions in D2O were stained. Phage E16B showed an elongated head 97×40.5 nm, and a contractile tail 89 nm long. This phage corresponds to the extremely rate group A3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号