首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two halophilic, hydrocarbonoclastics bacteria, Marinobacter sedimentarum and M. flavimaris, with diazotrophic potential occured in hypersaline waters and soils in southern and northern coasts of Kuwait. Their numbers were in the magnitude of 103 colony forming units g?1. The ambient salinity in the hypersaline environments was between 3.2 and 3.5 M NaCl. The partial 16S rRNA gene sequences of the two strains showed, respectively, 99 and 100 % similarities to the sequences in the GenBank. The two strains failed to grow in the absence of NaCl, exhibited best growth and hydrocarbon biodegradation in the presence of 1 to 1.5 M NaCl, and still grew and maintained their hydrocarbonoclastic activity at salinities up to 5 M NaCl. Both species utilized Tween 80, a wide range of individual aliphatic hydrocarbons (C9–C40) and the aromatics benzene, biphenyl, phenanthrene, anthracene and naphthalene as sole sources of carbon and energy. Experimental evidence was provided for their nitrogen-fixation potential. The two halophilic Marinobacter strains successfully mineralized crude oil in nutrient media as well as in hypersaline soil and water microcosms without the use of any nitrogen fertilizers.  相似文献   

2.
Cyanobacteria and diatom mats are ubiquitous in hypersaline environments but have never been observed in the Dead Sea, one of the most hypersaline lakes on Earth. Here we report the discovery of phototrophic microbial mats at underwater freshwater seeps in the Dead Sea. These mats are either dominated by diatoms or unicellular cyanobacteria and are spatially separated. Using in situ and ex situ O2 microsensor measurements we show that these organisms are photosynthetically active in their natural habitat. The diatoms, which are phylogenetically associated to the Navicula genus, grew in culture at salinities up to 40 % Dead Sea water (DSW) (14 % total dissolved salts, TDS). The unicellular cyanobacteria belong to the extremely halotolerant Euhalothece genus and grew at salinities up to 70 % DSW (24.5 % TDS). As suggested by a variable O2 penetration depth measured in situ, the organisms are exposed to drastic salinity fluctuations ranging from brackish to DSW salinity within minutes to hours. We could demonstrate that both phototrophs are able to withstand such extreme short-term fluctuations. Nevertheless, while the diatoms recover better from rapid fluctuations, the cyanobacteria cope better with long-term exposure to DSW. We conclude that the main reason for the development of these microbial mats is a local dilution of the hypersaline Dead Sea to levels allowing growth. Their spatial distribution in the seeping areas is a result of different recovery rates from short or long-term fluctuation in salinity.  相似文献   

3.
Chitin is produced in large amounts in hypersaline habitats with neutral pH due to the high biomass production of brine shrimp Artemia. Recently, a high abundance of Artemia was also noticed in hypersaline soda lakes in the Kulunda Steppe (Altai, Russia), which prompted us to survey the possibility of microbial chitin utilization at extremely haloalkaline conditions in soda brines. Most active chitin utilisation-supporting microbial growth was found at anaerobic conditions at pH 10 and up to 3.5?M total Na+. At aerobic conditions, the degradation of chitin was slower, mostly incomplete and active at <2?M total Na+, although very slow partial degradation was possible up to 4?M Na+. Anaerobic enrichments at pH 10 yielded two different groups of obligately haloalkaliphilic fermentative anaerobes, exclusively specialized to utilise insoluble chitin as the only growth substrate. One group was represented by a single strain growing at moderate salinity, and another comprised multiple isolates growing up to 3.5?M Na+. These groups represent two novel bacterial phyla not closely related to any other cultured bacteria. Aerobic enrichments from the lake sediments were dominated by several obligately haloalkaliphilic members of the genus Marinimicrobium in the Gammaproteobacteria. They were less specialised than the anaerobes and grew with chitin and its monomer and oligomers at a pH of 10 up to 2.5?M Na+. Furthermore, several strains of haloalkaliphilic Gram-positive chitinolytics belonging to bacilli and actinobacteria were isolated from soda lake sediments and surrounding soda soils. In general, the results indicate the presence of an active and diverse haloalkaliphilic chitinolytic microbial community in hypersaline soda habitats.  相似文献   

4.
A novel strain, alga-05, of alkaliphilic purple nonsulfur bacteria was isolated from sediments of a small saline (60 g/l) soda lake near Lake Algin (Barguzin Valley, Buryat Republic, Russia). These bacteria contain bacteriochlorophyll a and carotenoids of the alternative spirilloxanthin group with predominating demethylspheroidenone. They are facultative anaerobes; their photosynthetic structures are of the vesicular type and arranged along the cell periphery. Growth of this strain is possible in a salinity range of 5–80 g/l NaCl, with an optimum at 20 g/l NaCl. Best growth occurred at 20–35°C. Analysis of the 16S rRNA gene sequences demonstrated that the studied isolate is closely related to the alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis (99% similarity) isolated from soda lakes of the African Rift Zone. According to the results of DNA-DNA hybridization, strain alga-05 has a 52% similarity with the type species of the genus Rhodobaca. On the basis of the obtained genotypic data and some phenotypic properties (dwelling in a hypersaline soda lake of Siberia, moderate halophily, ability to grow at relatively low temperatures, etc.), the isolated strain of purple bacteria was described as a new species of the genus Rhodobaca, Rca. barguzinensis sp. nov.  相似文献   

5.
Lately, there has been a special interest in understanding the role of halophilic and halotolerant organisms for their ability to degrade hydrocarbons. The focus of this study was to investigate the genes and enzymes involved in the initial steps of the benzene degradation pathway in halophiles. The extremely halophilic bacteria Arhodomonas sp. strain Seminole and Arhodomonas sp. strain Rozel, which degrade benzene and toluene as the sole carbon source at high salinity (0.5 to 4 M NaCl), were isolated from enrichments developed from contaminated hypersaline environments. To obtain insights into the physiology of this novel group of organisms, a draft genome sequence of the Seminole strain was obtained. A cluster of 13 genes predicted to be functional in the hydrocarbon degradation pathway was identified from the sequence. Two-dimensional (2D) gel electrophoresis and liquid chromatography-mass spectrometry were used to corroborate the role of the predicted open reading frames (ORFs). ORFs 1080 and 1082 were identified as components of a multicomponent phenol hydroxylase complex, and ORF 1086 was identified as catechol 2,3-dioxygenase (2,3-CAT). Based on this analysis, it was hypothesized that benzene is converted to phenol and then to catechol by phenol hydroxylase components. The resulting catechol undergoes ring cleavage via the meta pathway by 2,3-CAT to form 2-hydroxymuconic semialdehyde, which enters the tricarboxylic acid cycle. To substantiate these findings, the Rozel strain was grown on deuterated benzene, and gas chromatography-mass spectrometry detected deuterated phenol as the initial intermediate of benzene degradation. These studies establish the initial steps of the benzene degradation pathway in halophiles.  相似文献   

6.
A Gram-negative, non-endospore-forming, rod shaped, strictly aerobic, moderately halophilic bacterium, designated strain M9BT, was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain M9BT were found to be motile and produce colonies with an orange-yellow pigment. Growth was determined to occur between 5 and 20 % (w/v) NaCl and the isolate grew optimally at 7.5–10 % (v/w) NaCl. The optimum pH and temperature for growth of the strain were determined to be pH 7.0 and 35 °C, respectively, while it was able to grow over pH and temperature ranges of 6–8 and 25–45 °C, respectively. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain M9BT is a member of the genus Marinobacter. The closest relative to this strain was found to be Marinobacter hydrocarbonoclasticus MBIC 1303T with a similarity level of 97.7 %. DNA–DNA hybridization between the novel isolate and this phylogenetically related species was 13 ± 2 %. The major cellular fatty acids of the isolate were identified as C16:0, C19:1 ω6c, C18:1 ω9c and C16:1 ω9c. The polar lipid pattern of strain M9BT was determined to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and three phospholipids. Ubiquinone 9 (Q-9) was the only lipoquinone detected. The G+C content of the genomic DNA of this strain was determined to be 58.6 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that this strain represents a novel species of the genus Marinobacter, for which the name Marinobacter persicus sp. nov. is proposed. The type strain of Marinobacter persicus is strain M9BT (=IBRC-M 10445T = CCM 7970T = CECT 7991T = KCTC 23561T).  相似文献   

7.
We have studied the activity and composition of several geochemically significant physiological groups of bacteria in more than twenty alkaline salt lakes of the north-east Mongolia steppe with water salinity from 3 to 390 g l?1 and pH values ranging from 9.0 to 10.6. Active and diverse microbial communities have been found in most of the lakes. The methanotrophic bacteria were represented by the Type I members. Among the culturable forms of sulfur-oxidizing bacteria obligately chemolithoautotrophic and haloalkaliphilic representatives of the genera Thioalkalimicrobium and Thioalkalivibrio were detected in the sediments at high numbers (up to 106 cells ml?1). The largest population of anaerobic phototrophic bacteria was represented by purple sulfur bacteria of the Ectothiorhodospiraceae family. Salinity was the key factor in determining the activity and the composition of the microbial communities. The most diverse and active prokaryotic populations, including aerobic and anaerobic phototrophic, methanogenic, methanotrophic, sulfur-oxidizing, sulfate-reducing and nitrifying bacteria, were found in lakes with salinity less than 60 g l?1. In hypersaline lakes with a salinity >100 g l?1, the sulfur cycle remained active due to the activity of extremely halotolerant and alkaliphilic sulfur bacteria, while other important functional groups responsible for nitrification and methane oxidation processes were not detected. Overall, the prokaryotic communities of the Mongolian alkaline salt lakes represent an interesting new example of a diverse community of haloalkaliphilic bacteria well adopted to a broad salinity range.  相似文献   

8.
Two extreme halophilic Haloferax strains and one strain each of Halobacterium and Halococcus were isolated from a hypersaline coastal area of the Arabian Gulf on a mineral salt medium with crude oil vapor as a sole source of carbon and energy. These archaea needed at least 1 M NaCl for growth in culture, and grew best in the presence of 4 M NaCl or more. Optimum growth temperatures lied between 40 and 45oC. The four archaea were resistant to the antibiotics chloramphenicol, cycloheximide, nalidixic acid, penicillin, streptomycin and tetracycline. The strains could grow on a wide scope of aliphatic and aromatic (both mono-and polynuclear) hydrocarbons, as sole sources of carbon and energy. Quantitative measurements revealed that these extreme halophilic prokaryotes could biodegrade crude oil (13–47%, depending on the strain and medium salinity), n-octadecane (28–67%) and phenanthrene (13–30%) in culture after 3 weeks of incubation. The rates of biodegradation by all strains were enhanced with increasing NaCl concentration in the medium. Optimal concentration was 3 M NaCl, but even with 4 M NaCl the hydrocarbon-biodegradation rates were higher than with 1 and 2 M NaCl. It was concluded that these archaea could contribute to self-cleaning and bioremediation of oil-polluted hypersaline environments.  相似文献   

9.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

10.
The occurrence and importance of photoautotrophic picoplankton (PPP, cells with a diameter <2 μm) was studied along a trophic and salinity gradient in hypersaline lakes of the Transylvanian Basin (Romania). The studied lakes were found to be rich in PPP, with abundances (maximum 7.6 × 106 cells mL?1) higher than in freshwater and marine environments of similar trophic conditions. The contribution of PPP to the total phytoplankton biovolume did not decrease with increasing trophic state as it was generally found in other aquatic environments. Regardless of the trophic conditions, the contribution of PPP could reach 90–100 % in these hypersaline lakes. We hypothesized that the PPP predominance might be the result of the low grazing pressure, since heterotrophic nanoflagellates (the main grazers of PPP) were absent in the studied samples. There were significant differences in community composition among the lakes along the salinity gradient. CyPPP predominated in less saline waters (mainly below 5 %), while EuPPP were present along the entire salinity range (up to 18.7 %), dominating the phytoplankton between 3 and 13 % salinity. Above 13 % salinity, the phytoplankton was composed mainly of Dunaliella species.  相似文献   

11.
A novel moderately thermophilic bacterium, strain STGHT, was isolated from Severo-Stavropolskoye underground gas storage (Russia). Cells of strain STGHT were spore-forming motile straight rods 0.3 μm in diameter and 2.0–4.0 μm in length having a Gram-positive cell wall structure. The temperature range for growth was 36–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0–7.5. Growth of strain STGHT was observed at NaCl concentrations ranging from 0 to 4.0 % (w/v) with an optimum at 1.0 % (w/v). Strain STGHT grew anaerobically by reduction of nitrate, thiosulfate, S0 and AQDS using a number of complex proteinaceous compounds, organic acids and carbohydrates as electron donors. Nitrate was reduced to nitrite; thiosulfate and sulfur were reduced to sulfide. It also was able to ferment pyruvate, glucose, fructose, and maltose. The strain STGHT did not grow under aerobic conditions during incubation with atmospheric concentration of oxygen but was able to microaerobic growth (up to 10 % of oxygen in gas phase). The G+C content of DNA of strain STGHT was 34.8 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belongs to the class Bacilli. We propose to assign strain STGHT to a new species of a novel genus Tepidibacillus fermentans gen. nov., sp.nov. The type strain is STGHT (=DSM 23802T, =VKM B-2671T).  相似文献   

12.
Two halophilic archaea, strains GX21T and R35T, were isolated from a marine solar saltern and an aquaculture farm in China, respectively. Cells of the two strains were observed to be pleomorphic, flat, to contain gas vesicles, stain Gram-negative and produce red-pigmented colonies. Strain GX21T was found to be able to grow at 25–50 °C (optimum 37 °C), at 2.6–4.8 M NaCl (optimum 3.4 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–8.5 (optimum pH 6.5) while strain R35T was found to be able to grow at 25–45 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0–0.7 M MgCl2 (optimum 0.03 M MgCl2) and at pH 5.5–9.5 (optimum pH 6.5–7.0). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 15 % (w/v) for strain GX21T and 12 % (w/v) for strain R35T. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid and a minor lipid chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. 16S rRNA gene sequence analysis revealed that strains GX21T and R35T show 97.1 % sequence similarity to each other and are closely related to Haloplanus aerogenes TBN37T (96.8 and 95.8 %), Haloplanus vescus RO5-8T (96.7 and 96.1 %), Haloplanus salinus YGH66T (96.4 and 95.8 %) and Haloplanus natans JCM 14081T (96.3 and 95.4 %). The rpoB′ gene similarity between strains GX21T and R35T is 90.5 % and show 88.5–90.8 % similarity to the Haloplanus species with validly published names. The DNA G+C content of strain GX21T and R35T were determined to be 65.8 and 66.0 mol%, respectively. The DNA–DNA hybridization values between strain GX21T and strain R35T, and the two strains with the Haloplanus species with validly published names, showed less than 50 % DNA–DNA relatedness. It was concluded that strain GX21T (=CGMCC 1.10456T = JCM 17092T) and strain R35T (=CGMCC 1.10594 T = JCM 17271T) represent two new species of Haloplanus, for which the names Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov. are proposed.  相似文献   

13.
Urmia Lake, located in northwest Iran, is an oligotrophic and extremely hypersaline habitat that supports diverse forms of life. Owing to its unique biodiversity and special environmental conditions, Urmia Lake National Park has been designated as one of the biosphere reserves by UNESCO. This study was aimed to characterize basidiomycetous yeasts in hypersaline soils surrounding the Urmia Lake National Park using a polyphasic combination of molecular and physiological data. Soil samples were collected from eight sites in Lake Basin and six islands insides the lake. Yeast strains were identified by sequencing the D1/D2 domains of the 26S rRNA gene. When D1/D2 domain sequencing did not resolve the identity of the species, strain identification was obtained by ITS 1 & 2 sequencing. Twenty-one species belonging to the genera Cystobasidium, Holtermanniella, Naganishia, Rhodotorula, Saitozyma, Solicoccozyma, Tausonia, Vanrija, and Vishniacozyma were identified. Solicoccozyma aeria represented the dominant species. The ability of isolates to grow at 10 and 15 % of NaCl was checked; about two-thirds of the strains grew at 10 %, while about 13 % of the isolates grew in medium with 15 % NaCl. this study is the first study on the culturable yeast diversity in hypersaline soils surrounding an Asian lake.  相似文献   

14.
A novel Gram-negative, aerobic, non-motile and rod-shaped bacterium was isolated from Qurugöl Lake near Tabriz city. The bacterium grew chemoorganolheterotrophically and chemolithoautotrophically. However, photo-organoheterotrophic, photo-lithoautotrophic and fermentative growth could not be demonstrated. The presence of photosynthesis genes pufL and pufM was not shown and photosynthesis pigments were not formed. Strain RCRI19T grew without NaCl and tolerated up to 3 % NaCl. Growth occurred at pH 6–9 (optimum, pH 7) and 15–55 °C (optimum 40–45 °C). Vitamins were not required for growth. The major fatty acids are C18:1 ω7C, 11-methyl C18:1 ω7C, C18:0 3-OH. The predominant respiratory quinone is ubiquinone Q-10. The G+C content of genomic DNA is 65.9 mol%. Analysis of 16S rRNA sequences showed that strain RCRI19T has the highest similarities with uncultured environmental sequences followed by members of the genera Rhodobacter (≤95.75 %), Haematobacter (≤95.53 %), Gemmobacter (≤95.17 %) and Falsirhodobacter (94.60 %) in the family Rhodobacteraceae. DNA–DNA relatedness between strain RCRI19T and the closest phylogenetically related strain, Rhodobacter blasticus LMG 4305T, was 20 %. Based on its phenotypic and chemotaxonomic characteristics and considering that it does not form photosynthetic pigments and is unable to grow phototrophically, it is concluded that strain RCRI19T cannot be included into the genus Rhodobacter and any of the other related genera. Therefore, we propose to place the new bacterium into a new genus and species for which the name Tabrizicola aquatica gen. nov. and sp. nov. is proposed. The type strain is RCRI19T (=BCCM/LMG 25773= JCM 17277= KCTC 23724T).  相似文献   

15.
16.
A novel anaerobic methylotrophic halophilic methanogen strain SLHTYROT was isolated from a deep hypersaline anoxic basin called “Tyro” located in the Eastern Mediterranean Sea. Cells of SLHTYROT were motile cocci. The strain SLHTYROT grew between 12 and 37 °C (optimum 30 °C), at pH between 6.5 and 8.2 (optimum pH 7.5) and salinity from 45 to 240 g L−1 NaCl (optimum 135 g L−1). Strain SLHTYROT was methylotrophic methanogen able to use methylated compounds (trimethylamine, dimethylamine, monomethylamine and methanol). Strain SLHTYROT was able to grow at in situ hydrostatic pressure and temperature conditions (35 MPa, 14 °C). Phylogenetic analysis based on 16S rRNA gene and mcrA gene sequences indicated that strain SLHTYROT was affiliated to genus Methanohalophilus within the order Methanosarcinales. It shared >99.16% of the 16S rRNA gene sequence similarity with strains of other Methanohalophilus species. Based on ANIb, AAI and dDDH measurements, and the physiological properties of the novel isolate, we propose that strain SLHTYROT should be classified as a representative of a novel species, for which the name Methanohalophilus profundi sp. nov. is proposed; the type strain is SLHTYROT (=DSM 108854 = JCM 32768 = UBOCC-M-3308).  相似文献   

17.
The halophilic archaeal strain GX71T was isolated from the Gangxi marine solar saltern near the Weihai city of Shandong Province, China. Cells of the strain were pleomorphic and lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. Strain GX71T was able to grow at 25–45 °C (optimum 30 °C), in the presence of 1.7–4.8 M NaCl (optimum 2.6 M NaCl), with 0.005–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0–7.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 10 % (w/v). The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-3) and an unidentified lipid was also detected. The 16S rRNA gene sequence of strain GX71T showed 94.0–97.0 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene sequence of strain GX71T was 87.3–93.4 % similarity to current members of the genus Halorubrum. The DNA G+C content of GX71T was 67.1 mol%. Strain GX71T showed low DNA–DNA relatedness with Halorubrum lipolyticum CGMCC 1.5332T, Halorubrum saccharovorum CGMCC 1.2147T, Halorubrum kocurii CGMCC 1.7018T and Halorubrum arcis CGMCC 1.5343T, the most closely related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX71T represents a novel species of the genus Halorubrum, for which the name Halorubrum salinum sp. nov. is proposed. The type strain is GX71T (= CGMCC 1.10458T = JCM 17093T).  相似文献   

18.
Recent metagenomic studies on saltern ponds with intermediate salinities have determined that their microbial communities are dominated by both Euryarchaeota and halophilic bacteria, with a gammaproteobacterium closely related to the genera Alkalilimnicola and Arhodomonas being one of the most predominant microorganisms, making up to 15% of the total prokaryotic population. Here we used several strategies and culture media in order to isolate this organism in pure culture. We report the isolation and taxonomic characterization of this new, never before cultured microorganism, designated M19-40T, isolated from a saltern located in Isla Cristina, Spain, using a medium with a mixture of 15% salts, yeast extract, and pyruvic acid as the carbon source. Morphologically small curved cells (young cultures) with a tendency to form long spiral cells in older cultures were observed in pure cultures. The organism is a Gram-negative, nonmotile bacterium that is strictly aerobic, non-endospore forming, heterotrophic, and moderately halophilic, and it is able to grow at 10 to 25% (wt/vol) NaCl, with optimal growth occurring at 15% (wt/vol) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that strain M19-40T has a low similarity with other previously described bacteria and shows the closest phylogenetic similarity with species of the genera Alkalilimnicola (94.9 to 94.5%), Alkalispirillum (94.3%), and Arhodomonas (93.9%) within the family Ectothiorhodospiraceae. The phenotypic, genotypic, and chemotaxonomic features of this new bacterium showed that it constitutes a new genus and species, for which the name Spiribacter salinus gen. nov., sp. nov., is proposed, with strain M19-40T (= CECT 8282T = IBRC-M 10768T = LMG 27464T) being the type strain.  相似文献   

19.
Halophilic archaeal strain YGH66T was isolated from the Yinggehai marine solar saltern near the Sanya city of Hainan Province, China. Cells were pleomorphic, flat, stained Gram-negative, and produced pink-pigmented colonies. Strain YGH66T was able to grow at 20–50 °C (optimum 37 °C), at 0.9–4.8 M NaCl (optimum 3.1 M NaCl), at 0.005–1.0 M MgCl2 (optimum 0.05 M MgCl2), and at pH 6.0–8.0 (optimum pH 7.0). The cells of strain YGH66T were lysed in distilled water, and the minimum NaCl concentration that prevented cell lysis was 5 % (w/v). The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid (GL1) chromatographically identical to sulfated mannosyl glucosyl diether and a minor unidentified lipid (GL2), respectively. On the basis of 16S rRNA gene sequence analysis, strain YGH66T was closely related to Haloplanus natans JCM 14081T, Haloplanus aerogenes TBN37T, and Haloplanus vescus RO5-8T with the similarities of 98.0, 97.6, and 96.9 %, respectively. The rpoB′ gene similarity between strain YGH66T and the current three members of Haloplanus were 90.4–92.8 %. The DNA G+C content of strain YGH66T was 67.2 mol %. The DNA–DNA hybridization values between strain YGH66T and three members of Haloplanus, H. natans JCM 14081T, H. aerogenes TBN37T, H. vescus RO5-8T were 50, 46 and 39 %, respectively. It was concluded that strain YGH66T represents a novel species of the genus Haloplanus, for which the name Haloplanus salinus sp. nov. is proposed. The type strain is YGH66T (=CGMCC 1.12127T = JCM 18368T).  相似文献   

20.
A Gram-positive, moderately halotolerant, rod-shaped, spore forming bacterium, designated strain FJAT-14515T was isolated from a soil sample in Cihu area, Taoyuan County, Taiwan. The strain grew at 10–35 °C (optimum at 30 °C), pH 5.7–9.0 (optimum at pH 7.0) and at salinities of 0–5 % (w/v) NaCl (optimum at 1 % w/v). The diagnostic diamino acid of the peptidoglycan of the isolated strain was meso-diaminopimelic acid and major respiratory isoprenoid quinone was MK-7. Major cellular fatty acids were anteiso-C15:0 (40.6 %), iso-C15:0 (20.7 %) and the DNA G+C content of strain FJAT-14515T was 37.1 mol %. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FJAT-14515T belongs to the genus Bacillus, and was most closely related to the reference strains of Bacillus muralis DSM 16288T (97.6 %) and Bacillus simplex DSM 1321T (97.5 %). Levels of DNA–DNA relatedness between strain FJAT-14515T and the reference strains of B. muralis DSM 16288T and B. simplex DSM 1321T were 27.9 % ± 3.32 and 44.1 % ± 0.57, respectively. Therefore, on the basis of phenotypic, chemotaxonomic and genotypic properties, strain FJAT-14515T represents a novel species of the genus Bacillus, for which the name Bacillus cihuensis sp. nov. is proposed. The type strain is FJAT-14515T (=DSM 25969T = CGMCC 1.12697T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号