首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was conducted to explore the possible contribution of a recently described leak K+ channel, TASK (TWIK-related acid-sensitive K+ channel), to the high resting K+ conductance of adrenal glomerulosa cells. Northern blot analysis showed the strongest TASK message in adrenal glomerulosa (capsular) tissue among the examined tissues including heart and brain. Single-cell PCR demonstrated TASK expression in glomerulosa cells. In patch-clamp experiments performed on isolated glomerulosa cells the inward current at -100 mV in 30 mM [K+] (reflecting mainly potassium conductance) was pH sensitive (17+/-2% reduction when the pH changed from 7.4 to 6.7). In Xenopus oocytes injected with mRNA prepared from adrenal glomerulosa tissue the expressed K+ current at -100 mV was virtually insensitive to tetraethylammonium (3 mM) and 4-aminopyridine (3 mM). Ba2+ (300 microM) and Cs+ (3 mM) induced voltage-dependent block. Lidocaine (1 mM) and extracellular acidification from pH 7.5 to 6.7 inhibited the current (by 28% and 16%, respectively). This inhibitory profile is similar (although it is not identical) to that of TASK expressed by injecting its cRNA. In oocytes injected with adrenal glomerulosa mRNA, TASK antisense oligonucleotide reduced significantly the expression of K+ current at -100 mV, while the sense oligonucleotide failed to have inhibitory effect. Application of angiotensin II (10 nM) both in isolated glomerulosa cells and in oocytes injected with adrenal glomerulosa mRNA inhibited the K+ current at -100 mV. Similarly, in oocytes coexpressing TASK and ATla angiotensin II receptor, angiotensin II inhibited the TASK current. These data together indicate that TASK contributes to the generation of high resting potassium permeability of glomerulosa cells, and this background K+ channel may be a target of hormonal regulation.  相似文献   

2.
Batrachotoxin-modified Na+ channels from toad muscle were inserted into planar lipid bilayers composed of neutral phospholipids. Single-channel conductances were measured for [Na+] ranging between 0.4 mM and 3 M. When membrane preparations were made in the absence of protease inhibitors, two open conductance states were identified: a fully open state (16.6 pS in 200 mM symmetrical NaCl) and a substate that was 71% of the full conductance. The substate was predominant at [Na+] > 65 mM, whereas the presence of the fully open state was predominant at [Na+] < 15 mM. Addition of protease inhibitors during membrane preparation stabilized the fully open state over the full range of [Na+] studied. In symmetrical Na+ solutions and in biionic conditions, the ratio of amplitudes remained constant and the two open states exhibited the same permeability ratios of PLi/PNa and PCs/PNa. The current-voltage relations for both states showed inward rectification only at [Na+] < 10 mM, suggesting the presence of asymmetric negative charge densities at both channel entrances, with higher charge density in the external side. An energy barrier profile that includes double ion occupancy and asymmetric charge densities at the channel entrances was required to fit the conductance-[Na+] relations and to account for the rectification seen at low [Na+]. Energy barrier profiles differing only in the energy peaks can give account of the differences between both conductance states. Estimation of the surface charge density at the channel entrances is very dependent on the ion occupancy used and the range of [Na+] tested. Independent evidence for the existence of a charged external vestibule was obtained at low external [Na+] by identical reduction of the outward current induced by micromolar additions of Mg2+ and Ba2+.  相似文献   

3.
Potassium (K+) channels mediating important physiological functions are characterized by a common pore-forming (P) domain. We report the cloning and functional analysis of the first higher plant outward rectifying K+ channel (KCO1) from Arabidopsis thaliana. KCO1 belongs to a new class of ''two-pore'' K+ channels recently described in human and yeast. KCO1 has four putative transmembrane segments and tandem calcium-binding EF-hand motifs. Heterologous expression of KCO1 in baculovirus-infected insect (Spodoptera frugiperda) cells resulted in outwardly rectifying, K+-selective currents elicited by depolarizing voltage pulses in whole-cell measurements. Activation of KCO1 was strongly dependent on the presence of nanomolar concentrations of cytosolic free Ca2+ [Ca2+]cyt. No K+ currents were detected when [Ca2+]cyt was adjusted to <150 nM. However, KCO1 strongly activated at increasing [Ca2+]cyt, with a saturating activity observed at approximately 300 nM [Ca2+]cyt. KCO1 single channel analysis on excised membrane patches, resulting in a single channel conductance of 64 pS, confirmed outward rectification as well as Ca2+-dependent activation. These data suggest a direct link between calcium-mediated signaling processes and K+ ion transport in higher plants. The identification of KCO1 as the first plant K+ outward channel opens a new field of structure-function studies in plant ion channels.  相似文献   

4.
Gap junction conductance (Gj) and channel gating sensitivity to voltage, Ca2+, H+, and heptanol were studied by double whole-cell clamp in Novikoff hepatoma cell pairs. Channel gating was observed at transjunctional voltages (Vj) > +/- 50 mV. The cells readily uncoupled with 1 mM 1-heptanol. With heptanol, single (gap junctional) channel events with unitary conductances (gamma j) of 46 and 97 pS were detected. Both Ca(2+)-loading (EGTA.Ca) and acidifying (100% CO2) solutions caused uncoupling. However, CO2 was effective when Ca2+i was buffered with EGTA (a H(+)-sensitive Ca-buffer) but not with BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) (a H(+)-insensitive Ca-buffer), suggesting a Ca(2+)-mediated H+ effect on gap junctions. This was tested by monitoring the Gj decay at different pCai values (9, 6.9, 6.3, 6, and 5.5; 1 mM BAPTA) and pHi values (7.2 or 6.1, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid and 2-(N-morpholino)ethansulphonic acid, respectively). With pCai > or = 6.9 (pH 7.2 or 6.1), Gj decreased to 10-70% of initial values in approximately 40 min, following single exponential decays (tau = approximately 28 min). With pCai 6-6.3 (pH 7.2 or 6.1), Gj decreased to 10-25% of initial values in 15 min (tau = approximately 5 min); the Student t gave a P = 0.0178. With pCa 5.5 the cells uncoupled in less than 1 min (tau = approximately 20 s). Low pHi affected neither time course nor shape of Gj decay at any pCai tested. The data indicate that these gap junctions are sensitive to [Ca2+]i in the physiological range (< or = 500 nM) and that low pHi, without an increase in [Ca2+]i, neither decreases Gj nor increases channel sensitivity to Ca2+.  相似文献   

5.
The arginine at position 148 is highly conserved in the inward rectifier K+ channel family. Increases of external pH decrease the single-channel conductance in mutant R148H of the Kir2.1 channel (arginine is mutated into histidine) but not in the wild type channel. Moreover, in 100 mM external K+, varying external pH induced biphasic changes of open channel noise, which peaks at around pH 7.4 in the R148H mutant but not in the wild type channel. The maximum single-channel conductances are higher in the wild type channel and R148H mutant at pH 6.0 than those in the R148H mutant at pH 7.4. However, the maximal conductance is achieved with much lower external [K+] for the latter. Interestingly, the single-channel conductances and open channel noise of the wild type channel at pH 6. 0 and the R148H mutant at pH 6.0 and 7.4 become the same in [K+] = 10 mM. These results indicate that the residue at position 148 is accessible to the external H+ and probably is involved in the formation of two K+ binding sites in the external pore mouth. Effective repulsion between permeating K+ ions in this area requires a positive charge at position 148, and such K+-K+ interaction is the essential mechanism underlying high K+ conduction rate through the Kir2.1 channel pore.  相似文献   

6.
Several papers reported the role of TASK2 channels in cell volume regulation and regulatory volume decrease (RVD). To check the possibility that the TASK2 channel modulates the RVD process in kidney, we performed primary cultures of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) from wild-type and TASK2 knockout (KO) mice. In KO mice, the TASK2 coding sequence was in part replaced by the lac-Z gene. This allows for the precise localization of TASK2 in kidney sections using beta-galactosidase staining. TASK2 was only localized in PCT cells. K+ currents were analyzed by the whole-cell clamp technique with 125 mM K-gluconate in the pipette and 140 mM Na-gluconate in the bath. In PCT cells from wild-type mice, hypotonicity induced swelling-activated K+ currents insensitive to 1 mM tetraethylammonium, 10 nM charybdotoxin, and 10 microM 293B, but blocked by 500 microM quinidine and 10 microM clofilium. These currents were increased in alkaline pH and decreased in acidic pH. In PCT cells from TASK2 KO, swelling-activated K+ currents were completely impaired. In conclusion, the TASK2 channel is expressed in kidney proximal cells and could be the swelling-activated K+ channel responsible for the cell volume regulation process during osmolyte absorptions in the proximal tubules.  相似文献   

7.
Chorionic plate arteries (CPA) are located at the maternofetal interface where they are able to respond to local metabolic changes. Unlike many other types of vasculature, the placenta lacks nervous control and requires autoregulation for controlling blood flow. The placental circulation, which is of low-resistance, may become hypoxic easily leading to fetal acidosis and fetal distress however the role of the ion channels in these circumstances is not well-understood. Active potassium channel conductances that are subject to local physicochemical modulation may serve as pathways through which such signals are transduced. The aim of this study was to investigate the modulation of CPA by pH and the channels implicated in these responses using wire myography. CPA were isolated from healthy placentae and pre-contracted with U46619 before testing the effects of extracellular pH using 1 M lactic acid over the pH range 7.4 - 6.4 in the presence of a variety of ion channel modulators. A change from pH 7.4 to 7.2 produced a 29±3% (n = 9) relaxation of CPA which increased to 61±4% at the lowest pH of 6.4. In vessels isolated from placentae of women with pre-eclampsia (n = 6), pH responses were attenuated. L-methionine increased the relaxation to 67±7% (n = 6; p<0.001) at pH 6.4. Similarly the TASK 1/3 blocker zinc chloride (1 mM) gave a maximum relaxation of 72±5% (n = 8; p<0.01) which compared with the relaxation produced by the TREK-1 opener riluzole (75±5%; n = 6). Several other modulators induced no significant changes in vascular responses. Our study confirmed expression of several ion channel subtypes in CPA with our results indicating that extracellular pH within the physiological range has an important role in controlling vasodilatation in the human term placenta.  相似文献   

8.
Ca(2+)-activated K+[K(Ca)] channels in resting and activated human peripheral blood T lymphocytes were characterized using simultaneous patch-clamp recording and fura-2 monitoring of cytosolic Ca2+ concentration, [Ca2+]i. Whole-cell experiments, using EGTA-buffered pipette solutions to raise [Ca2+]i to 1 microM, revealed a 25-fold increase in the number of conducting K(Ca) channels per cell, from an average of 20 in resting T cells to > 500 channels per cell in T cell blasts after mitogenic activation. The opening of K(Ca) channels in both whole-cell and inside-out patch experiments was highly sensitive to [Ca2+]i (Hill coefficient of 4, with a midpoint of approximately 300 nM). At optimal [Ca2+]i, the open probability of a K(Ca) channel was 0.3-0.5. K(Ca) channels showed little or no voltage dependence from - 100 to 0 mV. Single-channel I-V curves were linear with a unitary conductance of 11 pS in normal Ringer and exhibited modest inward rectification with a unitary conductance of approximately 35 pS in symmetrical 160 mM K+. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+ (1.0) > Rb+ (0.96) > NH4+ (0.17) > Cs+ (0.07). Slope conductance ratios were: NH4+ (1.2) > K+ (1.0) > Rb+ (0.6) > Cs+ (0.10). Extracellular Cs+ or Ba2+ each induced voltage-dependent block of K(Ca) channels, with block increasing at hyperpolarizing potentials in a manner suggesting a site of block 75% across the membrane field from the outside. K(Ca) channels were blocked by tetraethylammonium (TEA) applied externally (Kd = 40 mM), but were unaffected by 10 mM TEA applied inside by pipette perfusion. K(Ca) channels were blocked by charybdotoxin (CTX) with a half-blocking dose of 3-4 nM, but were resistant to block by noxiustoxin (NTX) at 1-100 nM. Unlike K(Ca) channels in Jurkat T cells, the K(Ca) channels of normal resting or activated T cells were not blocked by apamin. We conclude that while K(Ca) and voltage-gated K+ channels in the same cells share similarities in ion permeation, Cs+ and Ba2+ block, and sensitivity to CTX, the underlying proteins differ in structural characteristics that determine channel gating and block by NTX and TEA.  相似文献   

9.
Currents through single potassium channels were studied in cell-attached or inside-out patches from collagenase-dispersed smooth muscle cells of the guinea pig taenia coli. Under conditions mimicking the physiological state with [K+]i = 135 mM: [K+]o = 5.4 mM, three distinct types of K+ channel were identified with conductances around 0 mV of 147, 94, and 63 pS. The activities of the 94- and 63-pS channel were observed infrequently. The 147-pS channel was most abundant. It has a reversal potential of approximately -75 mV. It is sensitive to [Ca2+]i and to membrane potential. At -30 mV, the probability of a channel being open is at a minimum. At more positive voltages, the probability follows Boltzman distribution. A 10-fold change in [Ca2+]i causes a 25-mV negative shift of the voltage where half of the channels are open; an 11.3-mV change in membrane potential produces an e-fold increase in the probability of the channel being open when P is low. At voltages between -30 and -50 mV, the open probability increases in an anomalous manner because of a large decrease of the channel closed time without much change in the channel open time. This anomalous activity may play a regulatory role in maintaining the resting potential. The histograms of channel open and closed time fit well, respectively, with single and double exponential distributions. Upon step depolarizations by 100-ms pulses, the 147-pS channel opens with a brief delay. The delay shortens and both the number of open channels and the open time increase with increasing positivity of the potential. The averaged currents during the step depolarizations closely resemble the delayed rectifying outward K+ currents in whole-cell recordings.  相似文献   

10.
Ion permeation and conduction were studied using whole-cell recordings of the M-current (I(M)) and delayed rectifier (IDR), two K+ currents that differ greatly in kinetics and modulation. Currents were recorded from isolated bullfrog sympathetic neurons with 88 mM [K+]i and various external cations. Selectivity for extracellular monovalent cations was assessed from permeability ratios calculated from reversal potentials and from chord conductances for inward current. PRb/PK was near 1.0 for both channels, and GRb/GK was 0.87 +/- 0.01 for IDR but only 0.35 +/- 0.01 for I(M) (15 mM [Rb+]o or [K+]o). The permeability sequences were generally similar for I(M) and IDR: K+ approximately Rb+ > NH4+ > Cs+, with no measurable permeability to Li+ or CH3NH3+. However, Na+ carried detectable inward current for IDR but not I(M). Nao+ also blocked inward K+ current for IDR (but not IM), at an apparent electrical distance (delta) approximately 0.4, with extrapolated dissociation constant (KD) approximately 1 M at 0 mV. Much of the instantaneous rectification of IDR in physiologic ionic conditions resulted from block by Nao+. Extracellular Cs+ carried detectable inward current for both channel types, and blocked I(M) with higher affinity (KD = 97 mM at 0 mV for I(M), KD) approximately 0.2 M at 0 mV for IDR), with delta approximately 0.9 for both. IDR showed several characteristics reflecting a multi-ion pore, including a small anomalous mole fraction effect for PRb/PK, concentration-dependent GRb/GK, and concentration- dependent apparent KD's and delta's for block by Nao+ and Cso+. I(M) showed no clear evidence of multi-ion pore behavior. For I(M), a two- barrier one-site model could describe permeation of K+ and Rb+ and block by Cso+, whereas for IDR even a three-barrier, two-site model was not fully adequate.  相似文献   

11.
Potassium conduction through unblocked inwardly rectifying (IRK1, Kir2.1) potassium channels was measured in inside-out-patches from Xenopus oocytes, after removal of polyamine-induced strong inward rectification. Unblocked IRK1 channel current-voltage (I-V) relations show very mild inward rectification in symmetrical solutions, are linearized in nonsymmetrical solutions that bring the K+ reversal potential to extreme negative values, and follow Goldman-Hodgkin-Katz constant field equation at extreme positive E alpha. When intracellular K+ concentration (KIN) was varied, at constant extracellular K+ concentration (KOUT) the conductance at the reversal potential (GREV) followed closely the predictions of the Goldman-Hodgkin-Katz constant field equation at low concentrations and saturated sharply at concentrations of > 150 mM. Similarly, when KOUT was varied, at constant KIN, GREV saturated at concentrations of > 150 mM. A square-root dependence of conductance on KOUT is a well-known property of inward rectifier potassium channels and is a property of the open channel. A nonsymmetrical two-site three-barrier model can qualitatively explain both the I-V relations and the [K+] dependence of conductance of open IRK1 (Kir2.1) channels.  相似文献   

12.
Changes in K(+) conductances and their contribution to membrane depolarization in the setting of an acidic pH environment have been studied in myocytes from aortic smooth muscle cells of spontaneously hypertensive rats (SHR) compared with those from Wistar-Kyoto (WKY) rats. The resting membrane potential (RMP) of aortic smooth muscle at extracellular pH (pH(o)) of 7.4 was significantly more depolarized in SHR than in WKY rats. Acidification to pH(o) 6.5 made this difference in RMP between SHR and WKY rats more significant by further depolarizing the SHR myocytes. Large-conductance Ca(2+)-activated K(+) (BK) currents, which were markedly suppressed by acidification, were larger in aortic myocytes of SHR than in those of WKY rats. In contrast, acid-sensitive, non-BK currents were smaller in SHR. Western blot analyses showed that expression of BK-alpha- and -beta(1) subunits in SHR aortas was upregulated and comparable with those in WKY rats, respectively. Additional electrophysiological and molecular studies showed that pH- and halothane-sensitive two-pore domain weakly inward rectifying K(+) channel (TWIK)-like acid-sensitive K(+) (TASK) channel subtypes were functionally expressed in aortas, and TASK1 expression was significantly higher in WKY than in SHR. Although the background current through TASK channels at normal pH(o) (7.4) was small and may not contribute significantly to the regulation of RMP, TASK channel activation by halothane or alkalization (pH(o) 8.0) induced significant hyperpolarization in WKY but not in SHR. In conclusion, the larger depolarization and subsequent abnormal contractions after acidification in aortic myocytes in the setting of SHR hypertension are mainly attributable to the larger contribution of BK current to the total membrane conductance than in WKY aortas.  相似文献   

13.
Anion conductance and permeability sequences were obtained for frog skeletal muscle membranes from the changes in characteristic resistance and transmembrane potential after the replacement of one anion by another in the bathing solution. Permeability and conductance sequences are the same. The conductance sequence at pH = 7.4 is Cl- Br- > NO3 - > I- > trichloroacetate ≥ benzoate > valerate > butyrate > proprionate > formate > acetate ≥ lactate > benzenesulfonate ≥ isethionate > methylsulfonate > glutamate ≥ cysteate. The anions are divided into two classes: (a) Chloride-like anions (Cl- through trichloroacetate) have membrane conductances that decrease as pH decreases. The last six members of the complete sequence are also chloride like. (b) Benzoate-like anions (benzoate through acetate) have conductances that increase as pH decreases. At pH = 6.7 zinc ions block Cl- and benzoate conductances with inhibitory dissociation constants of 0.12 and 0.16 mM, respectively. Chloride-like and benzoate-like anions probably use the same channels. The minimum size of the channel aperture is estimated as 5.5 x 6.5 Å from the dimensions of the largest permeating anions. A simple model of the channel qualitatively explains chloride-like and benzoate-like conductance sequences and their dependence on pH.  相似文献   

14.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

15.
Intracellular microelectrode recordings and a two-electrode voltage clamp have been used to characterize the current carried by inward rectifying K+ channels of stomatal guard cells from the broadbean, Vicia faba L. Superficially, the current displayed many features common to inward rectifiers of neuromuscular and egg cell membranes. In millimolar external K+ concentrations (Ko+), it activated on hyperpolarization with half-times of 100-200 ms, showed no evidence of time- or voltage-dependent inactivation, and deactivated rapidly (tau approximately 10 ms) on clamping to 0 mV. Steady-state conductance-voltage characteristics indicated an apparent gating charge of 1.3-1.6. Current reversal showed a Nernstian dependence on Ko+ over the range 3-30 mM, and the inward rectifier was found to be highly selective for K+ over other monovalent cations (K+ greater than Rb+ greater than Cs+ much greater than Na+). Unlike the inward rectifiers of animal membranes, the current was blocked by charybdotoxin and alpha-dendrotoxin (Kd much less than 50 nM), as well as by tetraethylammonium chloride (K1/2 = 9.1 mM); gating of the guard cell K+ current was fixed to voltages near -120 mV, independent of Ko+, and the current activated only with supramillimolar K+ outside (EK+ greater than -120 mV). Most striking, however, was inward rectifier sensitivity to [H+] with the K+ current activated reversibly by mild acid external pH. Current through the K+ inward rectifier was found to be largely independent of intracellular pH and the current reversal (equilibrium) potential was unaffected by pHo from 7.4 to 5.5. By contrast, current through the K+ outward rectifier previously characterized in these cells (1988. J. Membr. Biol. 102:235) was largely insensitive to pHo, but was blocked reversibly by acid-going intracellular pH. The action of pHo on the K+ inward rectifier could not be mimicked by extracellular Ca2+ for which changes in activation, deactivation, and conductance were consonant with an effect on surface charge ([Ca2+] less than or equal to 1 mM). Rather, extracellular pH affected activation and deactivation kinetics disproportionately, with acid-going pHo raising the K+ conductance and shifting the conductance-voltage profile positive-going along the voltage axis and into the physiological voltage range. Voltage and pH dependencies for gating were consistent with a single, titratable group (pKa approximately 7 at -200 mV) residing deep within the membrane electric field and accessible from the outside.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The Kv1.3 channel inactivates via the P/C-type mechanism, which is influenced by a histidine residue in the pore region (H399, equivalent of Shaker 449). Previously we showed that the electric field of the protonated histidines at low extracellular pH (pHe) creates a potential barrier for K+ ions just outside the pore that hinders their exit from the binding site controlling inactivation (control site) thereby slowing inactivation kinetics. Here we examined the effects of extracellular potassium [K+]e and pHe on the rate of inactivation of Kv1.3 using whole-cell patch-clamp. We found that in 150 mM [K+]e inactivation was accelerated upon switching to pHe 5.5 as opposed to the slowing at 5 mM [K+]e. The transition from slowing to acceleration occurred at 40 mM [K+]e, whereas this "turning point" was at 20 mM [K+]e for inward currents. The rate of entry of Ba(2+) ions from the extracellular space to the control site was significantly slowed by low pHe in wild-type hKv1.3, but it was insensitive to pH(e) in H399K and H399L mutants. Based on these observations we expanded our model and propose that the potential barrier created by the protonated histidines impedes the passage of K+ ions between the extracellular medium and the control site in both directions and the effect on inactivation rate (acceleration or slowing) depends on the relative contribution of filling from the extracellular and intracellular sides.  相似文献   

17.
Voltage-activated H+ currents were studied in rat alveolar epithelial cells using tight-seal whole-cell voltage clamp recording and highly buffered, EGTA-containing solutions. Under these conditions, the tail current reversal potential, Vrev, was close to the Nernst potential, EH, varying 52 mV/U pH over four delta pH units (delta pH = pHo - pHi). This result indicates that H+ channels are extremely selective, PH/PTMA > 10(7), and that both internal and external pH, pHi, and pHo, were well controlled. The H+ current amplitude was practically constant at any fixed delta pH, in spite of up to 100-fold symmetrical changes in H+ concentration. Thus, the rate-limiting step in H+ permeation is pH independent, must be localized to the channel (entry, permeation, or exit), and is not bulk diffusion limitation. The instantaneous current- voltage relationship exhibited distinct outward rectification at symmetrical pH, suggesting asymmetry in the permeation pathway. Sigmoid activation kinetics and biexponential decay of tail currents near threshold potentials indicate that H+ channels pass through at least two closed states before opening. The steady state H+ conductance, gH, as well as activation and deactivation kinetic parameters were all shifted along the voltage axis by approximately 40 mV/U pH by changes in pHi or pHo, with the exception of the fast component of tail currents which was shifted less if at all. The threshold potential at which H+ currents were detectably activated can be described empirically as approximately 20-40(pHo-pHi) mV. If internal and external protons regulate the voltage dependence of gH gating at separate sites, then they must be equally effective. A simpler interpretation is that gating is controlled by the pH gradient, delta pH. We propose a simple general model to account for the observed delta pH dependence. Protonation at an externally accessible site stabilizes the closed channel conformation. Deprotonation of this site permits a conformational change resulting in the appearance of a protonation site, possibly the same one, which is accessible via the internal solution. Protonation of the internal site stabilizes the open conformation of the channel. In summary, within the physiological range of pH, the voltage dependence of H+ channel gating depends on delta pH and not on the absolute pH.  相似文献   

18.
Protamine reversibly decreases cation permeability and alters the structure of Necturus gallbladder tight junctions. Conflicting results, however, have been published whether or not it also affects apical cell membrane permeability. We investigated this issue more systematically by measuring voltage (psi mc) and fractional resistance (fRa) of the apical membrane at varying concentrations of protamine, K+, and H+ in the bathing solution. At pH 7.6 and [K+] 2.5 mM, (Poler, M.S. and Reuss, L. (1987) Am. J. Physiol. 253, C662) 6 microM protamine caused psi mc to depolarize from -58 to -51 mV and fRa to decrease from 0.74 to 0.67. If we increased pH to 8.1 these effects were even more pronounced. At [K+] 2.5 mM, but not 4.5 mM, psi mc transiently hyperpolarized for about 5 min after adding protamine. Most importantly, if [K+] was 4.5 mM and pH was adjusted to 7.1 (Bentzel et al. (1987) J. Membr. Biol. 95, 9) no significant changes of psi mc and fRa occurred. In any case, at a supramaximal concentration of 200 microM, protamine did not further increase the paracellular response but produced decreasing psi mc and fRa. We conclude that 6 microM protamine decreases K+ conductance of the apical membrane, if it is already tuned high by high pH. At low control K+ conductance as observed at lower pH, protamine action is restricted to the paracellular pathway. Thus, conflicting results were due to different experimental conditions. At a solution pH of 7.1, 6 microM protamine fulfills criteria of a selective tool for reversibly altering structure and function of the tight junction in Necturus gallbladder.  相似文献   

19.
Voltage-gated n-type K(V) and Ca(2+)-activated K+ [K(Ca)] channels were studied in cell-attached patches of activated human T lymphocytes. The single-channel conductance of the K(V) channel near the resting membrane potential (Vm) was 10 pS with low K+ solution in the pipette, and 33 pS with high K+ solution in the pipette. With high K+ pipette solution, the channel showed inward rectification at positive potentials. K(V) channels in cell-attached patches of T lymphocytes inactivated more slowly than K(V) channels in the whole-cell configuration. In intact cells, steady state inactivation at the resting membrane potential was incomplete, and the threshold for activation was close to Vm. This indicates that the K(V) channel is active in the physiological Vm range. An accurate, quantitative measure for Vm was obtained from the reversal potential of the K(V) current evoked by ramp stimulation in cell-attached patches, with high K+ solution in the pipette. This method yielded an average resting Vm for activated human T lymphocytes of -59 mV. Fluctuations in Vm were detected from changes in the reversal potential. Ionomycin activates K(Ca) channels and hyperpolarizes Vm to the Nernst potential for K+. Elevating intracellular Ca2+ concentration ([Ca2+]i) by ionomycin opened a 33-50-pS channel, identified kinetically as the CTX-sensitive IK-type K(Ca) channel. The Ca2+ sensitivity of the K(Ca) channel in intact cells was determined by measuring [Ca2+]i and the activity of single K(Ca) channels simultaneously. The threshold for activation was between 100 and 200 nM; half-maximal activation occurred at 450 nM. At concentrations > 1 microM, channel activity decreased. Stimulation of the T-cell receptor/CD3 complex using the mitogenic lectin, PHA, increased [Ca2+]i, and increased channel activity and current amplitude resulting from membrane hyperpolarization.  相似文献   

20.
Conduction in inward rectifier, K+-channels in Aplysia neuron and Ba++ blockade of these channels were studied by rapid measurement of the membrane complex admittance in the frequency range 0.05 to 200 Hz during voltage clamps to membrane potentials in the range -90 to -40 mV. Complex ionic conductances of K+ and Cl- rectifiers were extracted from complex admittances of other membrane conduction processes and capacitance by vector subtraction of the membrane complex admittance during suppressed inward K+ current (near zero-mean current and in zero [K+]0) from complex admittances determined at other [K+]0 and membrane potentials. The contribution of the K+ rectifier to the admittance is distinguishable in the frequency domain above 1 Hz from the contribution of the Cl- rectifier, which is only apparent at frequencies less than 0.1 Hz. The voltage dependence (-90 to -40 mV) of the chord conductance (0.2 to 0.05 microS) and the relaxation time (4-8 ms) of K+ rectifier channels at [K+]0 = 40 mM were determined by curve fits of admittance data by a membrane admittance model based on the linearized Hodgkin-Huxley equations. The conductance of inward rectifier, K+ channels at a membrane potential of -80 mV had a square-root dependence on external K+ concentration, and the relaxation time increased from 2 to 7.5 ms for [K+]0 = 20 and 100 mM, respectively. The complex conductance of the inward K+ rectifier, affected by Ba++, was obtained by complex vector subtraction of the membrane admittance during blockage of inward rectifier, K+ channels (at -35 mV and [Ba++]0 = 5 mM) from admittances determined at -80 mV and at other Ba++ concentrations. The relaxation time of the blockade process decreased with increases in Ba++ concentration. An open-closed channel state model produces the inductive-like kinetic behavior in the complex conductance of inward rectifier, K+ channels and the addition of a blocked channel state accounts for the capacitive-like kinetic behavior of the Ba++ blockade process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号