首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New normalization methods for cDNA microarray data   总被引:7,自引:0,他引:7  
MOTIVATION: The focus of this paper is on two new normalization methods for cDNA microarrays. After the image analysis has been performed on a microarray and before differentially expressed genes can be detected, some form of normalization must be applied to the microarrays. Normalization removes biases towards one or other of the fluorescent dyes used to label each mRNA sample allowing for proper evaluation of differential gene expression. RESULTS: The two normalization methods that we present here build on previously described non-linear normalization techniques. We extend these techniques by firstly introducing a normalization method that deals with smooth spatial trends in intensity across microarrays, an important issue that must be dealt with. Secondly we deal with normalization of a new type of cDNA microarray experiment that is coming into prevalence, the small scale specialty or 'boutique' array, where large proportions of the genes on the microarrays are expected to be highly differentially expressed. AVAILABILITY: The normalization methods described in this paper are available via http://www.pi.csiro.au/gena/ in a software suite called tRMA: tools for R Microarray Analysis upon request of the authors. Images and data used in this paper are also available via the same link.  相似文献   

2.

Background  

With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration.  相似文献   

3.

Background  

Recently, a large number of methods for the analysis of microarray data have been proposed but there are few comparisons of their relative performances. By using so-called spike-in experiments, it is possible to characterize the analyzed data and thereby enable comparisons of different analysis methods.  相似文献   

4.
Simple total tag count normalization is inadequate for microRNA sequencing data generated from the next generation sequencing technology. However, so far systematic evaluation of normalization methods on microRNA sequencing data is lacking. We comprehensively evaluate seven commonly used normalization methods including global normalization, Lowess normalization, Trimmed Mean Method (TMM), quantile normalization, scaling normalization, variance stabilization, and invariant method. We assess these methods on two individual experimental data sets with the empirical statistical metrics of mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Additionally, we evaluate the methods with results from quantitative PCR validation. Our results consistently show that Lowess normalization and quantile normalization perform the best, whereas TMM, a method applied to the RNA-Sequencing normalization, performs the worst. The poor performance of TMM normalization is further evidenced by abnormal results from the test of differential expression (DE) of microRNA-Seq data. Comparing with the models used for DE, the choice of normalization method is the primary factor that affects the results of DE. In summary, Lowess normalization and quantile normalization are recommended for normalizing microRNA-Seq data, whereas the TMM method should be used with caution.  相似文献   

5.
Members of the heat shock protein-90 (Hsp90) family are key regulators of biological processes through dynamic interaction with a multitude of protein partners. However, the transient nature of these interactions hinders the identification of Hsp90 interactors. Here we show that chemical cross-linking with ethylene glycolbis (succinimidylsuccinate), but not shorter cross-linkers, generated an abundant 240-kDa heteroconjugate of the molecular chaperone Hsp90 in different cell types. The combined use of pharmacological and genetic approaches allowed the characterization of the subunit composition and subcellular compartmentalization of the multimeric protein complex, termed p240. The in situ formation of p240 did not require the N-terminal domain or the ATPase activity of Hsp90. Utilizing subcellular fractionation techniques and a cell-impermeant cross-linker, subpopulations of p240 were found to be present in both the plasma membrane and the mitochondria. The Hsp90-interacting proteins, including Hsp70, p60Hop and the scaffolding protein filamin A, had no role in governing the formation of p240. Therefore, chemical cross-linking combined with proteomic methods has the potential to unravel the protein components of this p240 complex and, more importantly, may provide an approach to expand the range of tools available to the study of the Hsp90 interactome.  相似文献   

6.
7.
Comparison of normalization methods with microRNA microarray   总被引:3,自引:0,他引:3  
Hua YJ  Tu K  Tang ZY  Li YX  Xiao HS 《Genomics》2008,92(2):122-128
MicroRNAs (miRNAs) are a group of RNAs that play important roles in regulating gene expression and protein translation. In a previous study, we established an oligonucleotide microarray platform to detect miRNA expression. Because it contained only hundreds of probes, data normalization was difficult. In this study, the microarray data for eight miRNAs extracted from inflamed rat dorsal root ganglion (DRG) tissue were normalized using 15 methods and compared with the results of real-time polymerase chain reaction. It was found that the miRNA microarray data normalized by the print-tip loess method were the most consistent with results from real-time polymerase chain reaction. Moreover, the same pattern was also observed in 14 different types of rat tissue. This study compares a variety of normalization methods and will be helpful in the preprocessing of miRNA microarray data.  相似文献   

8.
9.
Normalization of expression levels applied to microarray data can help in reducing measurement error. Different methods, including cyclic loess, quantile normalization and median or mean normalization, have been utilized to normalize microarray data. Although there is considerable literature regarding normalization techniques for mRNA microarray data, there are no publications comparing normalization techniques for microRNA (miRNA) microarray data, which are subject to similar sources of measurement error. In this paper, we compare the performance of cyclic loess, quantile normalization, median normalization and no normalization for a single-color microRNA microarray dataset. We show that the quantile normalization method works best in reducing differences in miRNA expression values for replicate tissue samples. By showing that the total mean squared error are lowest across almost all 36 investigated tissue samples, we are assured that the bias correction provided by quantile normalization is not outweighed by additional error variance that can arise from a more complex normalization method. Furthermore, we show that quantile normalization does not achieve these results by compression of scale.  相似文献   

10.
Transformation and normalization of oligonucleotide microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: Most methods of analyzing microarray data or doing power calculations have an underlying assumption of constant variance across all levels of gene expression. The most common transformation, the logarithm, results in data that have constant variance at high levels but not at low levels. Rocke and Durbin showed that data from spotted arrays fit a two-component model and Durbin, Hardin, Hawkins, and Rocke, Huber et al. and Munson provided a transformation that stabilizes the variance as well as symmetrizes and normalizes the error structure. We wish to evaluate the applicability of this transformation to the error structure of GeneChip microarrays. RESULTS: We demonstrate in an example study a simple way to use the two-component model of Rocke and Durbin and the data transformation of Durbin, Hardin, Hawkins and Rocke, Huber et al. and Munson on Affymetrix GeneChip data. In addition we provide a method for normalization of Affymetrix GeneChips simultaneous with the determination of the transformation, producing a data set without chip or slide effects but with constant variance and with symmetric errors. This transformation/normalization process can be thought of as a machine calibration in that it requires a few biologically constant replicates of one sample to determine the constant needed to specify the transformation and normalize. It is hypothesized that this constant needs to be found only once for a given technology in a lab, perhaps with periodic updates. It does not require extensive replication in each study. Furthermore, the variance of the transformed pilot data can be used to do power calculations using standard power analysis programs. AVAILABILITY: SPLUS code for the transformation/normalization for four replicates is available from the first author upon request. A program written in C is available from the last author.  相似文献   

11.
SUMMARY: We present a web server for Diagnosis and Normalization of MicroArray Data (DNMAD). DNMAD includes several common data transformations such as spatial and global robust local regression or multiple slide normalization, and allows for detecting several kinds of errors that result from the manipulation and the image analysis of the arrays. This tool offers a user-friendly interface, and is completely integrated within the Gene Expression Pattern Analysis Suite (GEPAS). AVAILABILITY: The tool is accessible on-line at http://dnmad.bioinfo.cnio.es.  相似文献   

12.
Optimized LOWESS normalization parameter selection for DNA microarray data   总被引:1,自引:0,他引:1  

Background  

Microarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with the LOWESS normalization strategy deals with choosing the appropriate parameters. Parameters are usually chosen arbitrarily, which may reduce the efficiency of the normalization and result in non-optimally normalized data. Thus, there is a need to explore LOWESS parameter selection in greater detail.  相似文献   

13.
14.
MOTIVATION: The goal of the study is to obtain genetic information from exfoliated colonocytes in the fecal stream rather than directly from mucosa cells within the colon. The latter is obtained through invasive procedures. The difficulties encountered by this procedure are that certain probe information may be compromised due to partially degraded mRNA. Proper normalization is essential to obtaining useful information from these fecal array data. RESULTS: We propose a new two-stage semiparametric normalization method motivated by the features observed in fecal microarray data. A location-scale transformation and a robust inclusion step were used to roughly align arrays within the same treatment. A non-parametric estimated non-linear transformation was then used to remove the potential intensity-based biases. We compared the performance of the new method in analyzing a fecal microarray dataset with those achieved by two existing normalization approaches: global median transformation and quantile normalization. The new method favorably compared with the global median and quantile normalization methods. AVAILABILITY: The R codes implementing the two-stage method may be obtained from the corresponding author.  相似文献   

15.
In this study we present two novel normalization schemes for cDNA microarrays. They are based on iterative local regression and optimization of model parameters by generalized cross-validation. Permutation tests assessing the efficiency of normalization demonstrated that the proposed schemes have an improved ability to remove systematic errors and to reduce variability in microarray data. The analysis also reveals that without parameter optimization local regression is frequently insufficient to remove systematic errors in microarray data.  相似文献   

16.

Background  

Normalization is a basic step in microarray data analysis. A proper normalization procedure ensures that the intensity ratios provide meaningful measures of relative expression values.  相似文献   

17.

Background  

Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap.  相似文献   

18.

Background  

The quality of microarray data can seriously affect the accuracy of downstream analyses. In order to reduce variability and enhance signal reproducibility in these data, many normalization methods have been proposed and evaluated, most of which are for data obtained from cDNA microarrays and Affymetrix GeneChips. CodeLink Bioarrays are a newly emerged, single-color oligonucleotide microarray platform. To date, there are no reported studies that evaluate normalization methods for CodeLink Bioarrays.  相似文献   

19.
ArrayNorm: comprehensive normalization and analysis of microarray data   总被引:2,自引:0,他引:2  
SUMMARY: ArrayNorm is a user-friendly, versatile and platform-independent Java application for the visualization, normalization and analysis of two-color microarray data. A variety of normalization options were implemented to remove the systematic and random errors in the data, taking into account the experimental design and the particularities of every slide. In addition, ArrayNorm provides a module for statistical identification of genes with significant changes in expression. AVAILABILITY: The package is freely available for academic and non-profit institutions from http://genome.tugraz.at  相似文献   

20.

Background  

Analysis of DNA microarray data usually begins with a normalization step where intensities of different arrays are adjusted to the same scale so that the intensity levels from different arrays can be compared with one other. Both simple total array intensity-based as well as more complex "local intensity level" dependent normalization methods have been developed, some of which are widely used. Much less developed methods for microarray data analysis include those that bypass the normalization step and therefore yield results that are not confounded by potential normalization errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号