首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of understanding the mechanisms of retinal neovascularization, we had reported previously that vascular endothelial growth factor (VEGF)-induced pathological retinal angiogenesis requires the activation of Src-PLD1-PKCγ signaling. In the present work, we have identified cytosolic phospholipase A(2) (cPLA(2)) as an effector molecule of Src-PLD1-PKCγ signaling in the mediation of VEGF-induced pathological retinal angiogenesis based on the following observations. VEGF induced cPLA(2) phosphorylation in a time-dependent manner in human retinal microvascular endothelial cells (HRMVECs). VEGF also induced arachidonic acid (AA) release in a dose-, time-, and cPLA(2)-dependent manner. Depletion of cPLA(2) levels inhibited VEGF-induced HRMVEC DNA synthesis, migration, and tube formation. In addition, the exogenous addition of AA rescued VEGF-induced HRMVEC DNA synthesis, migration, and tube formation from inhibition by down-regulation of cPLA(2). Inhibition of Src, PLD1, or PKCγ attenuated VEGF-induced cPLA(2) phosphorylation and AA release. Consistent with these findings, hypoxia induced cPLA(2) phosphorylation and activity in VEGF-Src-PLD1-PKCγ-dependent manner in a mouse model of oxygen-induced retinopathy. In addition, siRNA-mediated down-regulation of cPLA(2) levels in the retina abrogated hypoxia-induced retinal endothelial cell proliferation and neovascularization. These observations suggest that cPLA(2)-dependent AA release is required for VEGF-induced Src-PLD1-PKCγ-mediated pathological retinal angiogenesis.  相似文献   

2.
It has been demonstrated that equine neutrophils, but not eosinophils, require exogenous arachidonic acid for calcium ionophore A23187-induced leukotriene synthesis. Because cytosolic phospholipase A(2) (cPLA(2)) plays an essential role in leukotriene formation in leukocytes, we investigated the presence of a functional cPLA(2) in equine neutrophils. To determine whether cPLA(2) from neutrophils was catalytically active, we purified the enzyme >6,500 fold with 3% recovery from equine neutrophils. The full-length cDNA sequence encoded a 749-amino acid protein. The deduced amino acid sequence demonstrated 95% identity with human and mouse cPLA(2), as well as 83 and 73% identity with chicken and zebra fish cPLA(2) protein, respectively. The equine cPLA(2) possessed some properties that distinguished the equine enzyme from the human enzyme. First, the enzyme activity of the equine cPLA(2) was differently influenced by cations as compared with the human cPLA(2). Second, the equine neutrophil cPLA(2) migrated as an approximately 105-kDa protein, in comparison with human cPLA(2) which migrated as a 110-kDa protein. A difference between equine neutrophils and eosinophils in the degree of phosphorylation of the cPLA(2) protein was observed. Thus, the cPLA(2) protein from eosinophils was constitutively phosphorylated, while the cPLA(2) protein from neutrophils was unphosphorylated.In summary, these results demonstrate that equine neutrophils indeed express an active cPLA(2) protein but that there is a difference in the degree of phosphorylation of the cPLA(2) protein between equine neutrophils and eosinophils. This difference might explain the difference between the two cell types in the capacity to produce leukotrienes from endogenous substrate.  相似文献   

3.
4.
Molecular Biology Reports - Previous studies have demonstrated that cytosolic phospholipase A2α (cPLA2α) is required for NOX2 NADPH oxidase activation in human and mouse phagocytes....  相似文献   

5.
Although human group VIB calcium-independent phospholipase A(2) (iPLA(2)gamma) contains the lipase-consensus sequence Gly-Xaa-Ser-Xaa-Gly in the C-terminal half, its overall sequence exhibits a week similarity to those of other PLA(2)s, and thus no information on the catalytic site has been available. Here we show that the C-terminal region of human iPLA(2)gamma is responsible for the enzymatic activity. Comparison of this catalytic domain with those of the mouse homologue, human cytosolic PLA(2) (cPLA(2)), and the plant PLA(2) patatin reveals that an amino acid sequence of a short segment around Asp-627 of iPLA(2)gamma is conserved among these PLA(2)s, in addition to the Ser-483-containing lipase motif; the corresponding serine and aspartate in cPLA(2) and patatin are known to form a catalytic dyad. Since substitution of alanine for either Ser-483 or Asp-627 results in a loss of the PLA(2) activity, we propose that Ser-483 and Asp-627 of human iPLA(2)gamma constitute an active site similar to the Ser-Asp dyad in cPLA(2) and patatin.  相似文献   

6.
In this study, we identify the principal splice variant of human cytosolic phospholipase A(2)beta (cPLA(2)beta) (also known as Group IVB cPLA(2)) present in cells. In human lung, spleen, and ovary and in a lung epithelial cell line (BEAS-2B), cPLA(2)beta is expressed as a 100-kDa protein, not the 114-kDa form originally predicted. Using RNA interference, the 100-kDa protein in BEAS-2B cells was confirmed to be cPLA(2)beta. BEAS-2B cells contain three different RNA splice variants of cPLA(2)beta (beta1, beta2, and beta3). cPLA(2)beta1 is identical to the previously cloned cPLA(2)beta, predicted to encode a 114-kDa protein. However, cPLA(2)beta2 and cPLA(2)beta3 splice variants are smaller and contain internal deletions in the catalytic domain. The 100-kDa cPLA(2)beta in BEAS-2B cells is the translated product of cPLA(2)beta3. cPLA(2)beta3 exhibits calcium-dependent PLA(2) activity against palmitoyl-arachidonyl-phosphatidylethanolamine and low level lysophospholipase activity but no activity against phosphatidylcholine. Unlike Group IVA cPLA(2)alpha, cPLA(2)beta3 is constitutively bound to membrane in unstimulated cells, localizing to mitochondria and early endosomes. cPLA(2)beta3 is widely expressed in tissues, suggesting that it has a generalized function at these unique sites.  相似文献   

7.
We have previously reported that in thrombin-stimulated human platelets, cytosolic phospholipase A(2) (cPLA2) is phosphorylated on Ser-505 by p38 protein kinase and on Ser-727 by an unknown kinase. Pharmacological inhibition of p38 leads to inhibition of cPLA2 phosphorylation at both Ser-505 and Ser-727 suggesting that the kinase responsible for phosphorylation on Ser-727 is activated in a p38-dependent pathway. By using Chinese hamster ovary, HeLa, and HEK293 cells stably transfected with wild type and phosphorylation site mutant forms of cPLA2, we show that phosphorylation of cPLA2 at both Ser-505 and Ser-727 and elevation of Ca(2+) leads to its activation in agonist-stimulated cells. The p38-activated protein kinases MNK1, MSK1, and PRAK1 phosphorylate cPLA2 in vitro uniquely on Ser-727 as shown by mass spectrometry. Furthermore, MNK1 and PRAK1, but not MSK1, is present in platelets and undergo modest activation in response to thrombin. Expression of a dominant negative form of MNK1 in HEK293 cells leads to significant inhibition of cPLA2-mediated arachidonate release. The results suggest that MNK1 or a closely related kinase is responsible for in vivo phosphorylation of cPLA2 on Ser-727.  相似文献   

8.
Brain tissue contains multiple forms of Phospholipase A(2) (PLA(2)) whose activities are involved in intracellular and intercellular signalling related to normal functions such as long-term potentiation, neurotransmitter release, cell growth and differentiation. Among them, we focused on regulatory mechanism of cPLA(2)α (Group IVA cytosolic PLA(2)) in brain tissue. In the present study, we report the identification of a cPLA(2)-activating protein (cPLAP) in the bovine brain. cPLAP activity appeared as two major peaks with molecular masses of 200 and 42 kDa in a Superose 12 gel filtration FPLC column. The 42-kDa form of cPLAP, designated cPLAPγ, was further purified using a Mono S FPLC column to near homogeneity and characterized to as a GTP-binding protein (G protein). Metabolic labelling and immunoprecipitation studies revealed that cPLAPγ associates with cPLA(2) in vitro and co-immunoprecipitates with [(35)S]-cPLA(2). Notably, cPLAPγ rendered cPLA(2) fully activated at submicromolar concentrations of Ca(2+). These results suggest that cPLAPγ may act as a G protein, activating cPLA(2)α prior to reaching full intracellular Ca(2+) concentrations.  相似文献   

9.
The 85 kDa cytosolic phospholipase A2 (cPLA2) plays a key role in liberating arachidonic acid from the sn-2 position of membrane phospholipids. When activated by extracellular stimuli, cPLA2 undergoes calcium-dependent translocation from cytosol to membrane sites which are still a matter of debate. In order to evaluate the effect of plasma membrane association on cPLA2 activation, we constructed chimeras of cPLA2 constitutively targeted to the plasma membrane by the N-terminal targeting sequence of the protein tyrosine kinase Lck (Lck-cPLA2) or the C-terminal targeting signal of K-Ras4B (cPLA2-Ras). Constitutive expression of these chimeras in Chinese hamster ovary cells overproducing the alpha2B adrenergic receptor (CHO-2B cells) did not affect the basal release of [3H]arachidonic acid, indicating that constitutive association of cPLA2 with cellular membranes did not ensure the hydrolysis of membrane phospholipids. However, Lck-cPLA2 increased [3H]arachidonic acid release in response to receptor stimulation and to increased intracellular calcium, whereas cPLA2-Ras inhibited it, compared with parental CHO-2B cells and CHO-2B cells producing comparable amounts of recombinant wild-type cPLA2. The lack of stimulation of cPLA2-Ras was not due to a decreased enzymatic activity as measured using an exogenous substrate, or to a decreased phosphorylation of the protein. These results show that the plasma membrane is a suitable site for cPLA2 activation when orientated correctly.  相似文献   

10.
11.
Cdc2 kinase is a catalytic subunit of maturation-promoting factor (MPF), a central factor for inducing the meiotic maturation of oocyte. To understand the role of Cdc2 kinase on the oocyte maturation in crustacean, a complete cDNA sequence of Cdc2 kinase was cloned from Chinese mitten crab Eriocheir sinensis and its spatial-temporal expression profiles were analyzed during oogenesis at RNA and protein levels. The crab Cdc2 cDNA (1364 bp) encodes for a 299 amino acids protein with calculated molecular weight of 34.7 kDa. The Cdc2 mRNAs level showed no significant change in the ovary during oogenesis, whereas higher protein level was found at previtellogenesis, late vitellogenesis and germinal vesicle breakdown (GVBD) stages. Two forms (35 kDa and 34 kDa) of Cdc2 proteins were simultaneously identified in ovary at all stages. Immunocytochemistry analysis revealed that Cdc2 proteins locate exclusively in ooplasm of previtellogenic oocyte, and then relocate into germinal vesicle at vitellogenesis stage and accumulate on meiotic spindle at oocyte maturation. These findings suggest that Cdc2 kinase has essential roles in inducing GVBD and generating meiotic apparatus during the crab oocyte maturation.  相似文献   

12.
The group IV cytosolic phospholipase A(2) (cPLA(2)) has been localized to the nucleus (M. R. Sierra-Honigmann, J. R. Bradley, and J. S. Pober, Lab. Investig. 74:684-695, 1996) and is known to translocate from the cytosolic compartment to the nuclear membrane (S. Glover, M. S. de Carvalho, T. Bayburt, M. Jonas, E. Chi, C. C. Leslie, and M. H. Gelb, J. Biol. Chem. 270:15359-15367, 1995; A. R. Schievella, M. K. Regier, W. L. Smith, and L. L. Lin, J. Biol. Chem. 270:30749-30754, 1995). We hypothesized that nuclear proteins interact with cPLA(2) and participate in the functional effects of this translocation. We have identified a nuclear protein, cPLA(2)-interacting protein (PLIP), a splice variant of human Tip60, which interacts with the amino terminal region of cPLA(2). Like Tip60, PLIP cDNA includes the MYST domain containing a C2HC zinc finger and well-conserved similarities to acetyltransferases. Both PLIP and Tip60 coimmunoprecipitate and colocalize with cPLA(2) within the nuclei of transfected COS cells. A polyclonal antibody raised to PLIP recognizes both PLIP and Tip60. Endogenous Tip60 and/or PLIP in rat mesangial cells is localized to the nucleus in response to serum deprivation. Nuclear localization coincides temporally with apoptosis. PLIP expression, mediated by adenoviral gene transfer, potentiates serum deprivation-induced prostaglandin E(2) (PGE(2)) production and apoptosis in mouse mesangial cells from cPLA(2)(+/+) mice but not in mesangial cells derived from cPLA(2)(-/-) mice. Thus PLIP, a splice variant of Tip60, interacts with cPLA(2) and potentiates cPLA(2)-mediated PGE(2) production and apoptosis.  相似文献   

13.
14.
The Ca(2+)-sensing receptor (CaR) stimulates a number of phospholipase activities, but the specific phospholipases and the mechanisms by which the CaR activates them are not defined. We investigated regulation of phospholipase A(2) (PLA(2)) by the Ca(2+)-sensing receptor (CaR) in human embryonic kidney 293 cells that express either the wild-type receptor or a nonfunctional mutant (R796W) CaR. The PLA(2) activity was attributable to cytosolic PLA(2) (cPLA(2)) based on its inhibition by arachidonyl trifluoromethyl ketone, lack of inhibition by bromoenol lactone, and enhancement of the CaR-stimulated phospholipase activity by coexpression of a cDNA encoding the 85-kDa human cPLA(2). No CaR-stimulated cPLA(2) activity was found in the cells that expressed the mutant CaR. Pertussis toxin treatment had a minimal effect on CaR-stimulated arachidonic acid release and the CaR-stimulated rise in intracellular Ca(2+) (Ca(2+)(i)), whereas inhibition of phospholipase C (PLC) with completely inhibited CaR-stimulated PLC and cPLA(2) activities. CaR-stimulated PLC activity was inhibited by expression of RGS4, an RGS (Regulator of G protein Signaling) protein that inhibits Galpha(q) activity. CaR-stimulated cPLA(2) activity was inhibited 80% by chelation of extracellular Ca(2+) and depletion of intracellular Ca(2+) with EGTA and inhibited 90% by treatment with W7, a calmodulin inhibitor, or with KN-93, an inhibitor of Ca(2+), calmodulin-dependent protein kinases. Chemical inhibitors of the ERK activator, MEK, and a dominant negative MEK, MEK(K97R), had no effect on CaR-stimulated cPLA(2) activity but inhibited CaR-stimulated ERK activity. These results demonstrate that the CaR activates cPLA(2) via a Galpha(q), PLC, Ca(2+)-CaM, and calmodulin-dependent protein kinase-dependent pathway that is independent the ERK pathway.  相似文献   

15.
We report the cloning and expression of a cDNA encoding a high molecular weight (85.2 kd) cytosolic phospholipase A2 (cPLA2) that has no detectable sequence homology with the secreted forms of PLA2. We show that cPLA2 selectively cleaves arachidonic acid from natural membrane vesicles and demonstrate that cPLA2 translocates to membrane vesicles in response to physiologically relevant changes in free calcium. Moreover, we demonstrate that an amino-terminal 140 amino acid fragment of cPLA2 translocates to natural membrane vesicles in a Ca(2+)-dependent fashion. Interestingly, we note that this 140 amino acid domain of cPLA2 contains a 45 amino acid region with homology to PKC, p65, GAP, and PLC. We suggest that this homology delineates a Ca(2+)-dependent phospholipid-binding motif, providing a mechanism for the second messenger Ca2+ to translocate and activate cytosolic proteins.  相似文献   

16.
The objective of this investigation was to determine the role of secretory and cytosolic isoforms of phospholipase A(2) (PLA(2)) in the induction of arachidonic acid (AA) and leukotriene synthesis in human eosinophils and the mechanism of PLA(2) activation by mitogen-activated protein kinase (MAPK) isoforms in this process. Pharmacological activation of eosinophils with fMLP caused increased AA release in a concentration (EC(50) = 8.5 nM)- and time-dependent (t(1/2) = 3.5 min) manner. Both fMLP-induced AA release and leukotriene C(4) (LTC(4)) secretion were inhibited concentration dependently by arachidonic trifluoromethyl ketone, a cytosolic PLA(2) (cPLA(2)) inhibitor; however, inhibition of neither the 14-kDa secretory phospholipase A(2) by 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propanephosphonic acid nor cytosolic Ca(2+)-independent phospholipase A(2) inhibition by bromoenol lactone blocked hydrolysis of AA or subsequent leukotriene synthesis. Pretreatment of eosinophils with a mitogen-activated protein/extracellular signal-regulated protein kinase (ERK) kinase inhibitor, U0126, or a p38 MAPK inhibitor, SB203580, suppressed both AA production and LTC(4) release. fMLP induced phosphorylation of MAPK isoforms, ERK1/2 and p38, which were evident after 30 s, maximal at 1-5 min, and declined thereafter. fMLP stimulation also increased cPLA(2) activity in eosinophils, which was inhibited completely by 30 microM arachidonic trifluoromethyl ketone. Preincubation of eosinophils with U0126 or SB203580 blocked fMLP-enhanced cPLA(2) activity. Furthermore, inhibition of Ras, an upstream GTP-binding protein of ERK, also suppressed fMLP-stimulated AA release. These findings demonstrate that cPLA(2) activation causes AA hydrolysis and LTC(4) secretion. We also find that cPLA(2) activation caused by fMLP occurs subsequent to and is dependent upon ERK1/2 and p38 MAPK activation. Other PLA(2) isoforms native to human eosinophils possess no significant activity in the stimulated production of AA or LTC(4).  相似文献   

17.
Lipid droplets (LD) are organelles present in all cell types, consisting of a hydrophobic core of triacylglycerols and cholesteryl esters, surrounded by a monolayer of phospholipids and cholesterol. This work shows that LD biogenesis induced by serum, by long-chain fatty acids, or the combination of both in CHO-K1 cells was prevented by phospholipase A(2) inhibitors with a pharmacological profile consistent with the implication of group IVA cytosolic phospholipase A(2) (cPLA(2)alpha). Knocking down cPLA(2)alpha expression with short interfering RNA was similar to pharmacological inhibition in terms of enzyme activity and LD biogenesis. A Chinese hamster ovary cell clone stably expressing an enhanced green fluorescent protein-cPLA(2)alpha fusion protein (EGFP-cPLA(2)) displayed higher LD occurrence under basal conditions and upon LD induction. Induction of LD took place with concurrent phosphorylation of cPLA(2)alpha at Ser(505). Transfection of a S505A mutant cPLA(2)alpha showed that phosphorylation at Ser(505) is key for enzyme activity and LD formation. cPLA(2)alpha contribution to LD biogenesis was not because of the generation of arachidonic acid, nor was it related to neutral lipid synthesis. cPLA(2)alpha inhibition in cells induced to form LD resulted in the appearance of tubulo-vesicular profiles of the smooth endoplasmic reticulum, compatible with a role of cPLA(2)alpha in the formation of nascent LD from the endoplasmic reticulum.  相似文献   

18.
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.  相似文献   

19.
Indole-5-carboxylic acids with 3-aryloxy-2-oxopropyl residues in position 1 were previously reported to be potent inhibitors of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) isolated from human platelets. In continuation of our attempts to develop novel cPLA(2)alpha inhibitors, a series of structurally related indole-2-carboxylic acids containing 3-aryloxy-2-oxopropoxy residues in position 5 were synthesized and tested for their cPLA(2)alpha-inhibitory potency. Furthermore, the thermodynamic solubility of these compounds and their metabolic stability against rat liver microsomes were evaluated.  相似文献   

20.
The cytosolic 85 kDa phospholipase A(2) (cPLA(2)) is a unique member of the phospholipase A(2) (PLA(2)) superfamily. Because PLA(2) activity and eicosanoid production are important in normal and pathophysiological states we and the laboratory of Shimizu created a mouse deficient in cPLA(2) (cPLA(2)(-/-) mouse). cPLA(2)(-/-) mice develop normally but the females have severe reproductive defects. cPLA(2)(-/-) mice suffer smaller infarcts and fewer neurological deficits after transient occlusion of the middle cerebral artery and have less injury after administration of a dopaminergic selective neurotoxin. cPLA(2)(-/-) mice have a more rapid recovery from allergen-induced bronchoconstriction and have no airway hyperresponsiveness. Peritoneal macrophages from cPLA(2)(-/-) mice fail to produce prostaglandins, leukotriene B(4) and cysteinyl leukotrienes after stimulation. Bone marrow-derived mast cells from cPLA(2)(-/-) mice fail to produce eicosanoids in either immediate or delayed phase responses. Thus the cPLA(2) knockout mouse has revealed important roles of cPLA(2) in normal fertility, generation of eicosanoids from inflammatory cells, brain injuries and allergic responses. Furthermore the cPLA(2)(-/-) mouse reveals that the many other forms of PLA(2) cannot replace many functions of cPLA(2). The importance of cPLA(2) in inflammation and tissue injury suggests that pharmacological targeting of this enzyme may have important therapeutic benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号