首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tourette syndrome is a neuropsychiatric disorder characterized by the presence of multiple, involuntary motor and vocal tics. Associated pathologies include attention deficit disorder and obsessive-compulsive disorder (OCD). Extensive linkage analysis based on an autosomal dominant mode of transmission with reduced penetrance has failed to show linkage with polymorphic markers, suggesting either locus heterogeneity or a polygenic origin for Tourette syndrome. An individual diagnosed with Tourette syndrome has been described carrying a constitutional (7;18) chromosome translocation (Comings et al. 1986). Other family members carrying the translocation exhibit features seen in Tourette syndrome including motor tics, vocal tics, and OCD. Since the disruption of specific genes by a chromosomal rearrangement can elicit a particular phenotype, we have undertaken the physical mapping of the 7;18 translocation such that genes mapping at the site of the breakpoint can be identified and evaluated for a possible involvement in Tourette syndrome. Using somatic cell hybrids retaining either the der(7) or the der(18), a more precise localization of the breakpoints on chromosomes 7 and 18 have been determined. Furthermore, physical mapping has identified two YAC clones that span the translocation breakpoint on chromosome 18 as determined by FISH. These YAC clones will be useful for the eventual identification of genes that map to chromosomes 7 and 18 at the site of the translocation.  相似文献   

2.
As a means of characterizing the distal long arm of chromosome 5, in particular, the region spanning 5q23-->q31, we analyzed somatic cell hybrids prepared from cells with overlapping chromosomal rearrangements. In one hybrid, the derivative chromosome 5 from a patient with acute myeloid leukemia (AML) de novo, whose bone marrow cells had a balanced translocation, t(5;7)(q31;q22), involving chromosome band 5q31, was isolated in a somatic cell hybrid (B294). In addition, we prepared somatic cell hybrids from a lymphoblastoid cell line (CC) derived from a patient who has a constitutional interstitial deletion of chromosome 5 spanning 5q23.1-->q31.1. By a combination of Southern hybridization analysis and fluorescent in situ hybridization, we constructed a map dividing 5q23-->q31 into four regions. We can assign genes to these regions and relate them to anonymous RFLP markers that have been genetically mapped.  相似文献   

3.
We have characterized a collection of zebrafish/mouse somatic cell hybrids with 211 genes and markers chosen from the 25 zebrafish linkage groups. Most of the zebrafish genome is represented in this collection with 88% of genes/markers present in at least one hybrid cell line. Although most hybrids contain chromosomal fragments, there are a few instances where a complete or nearly complete zebrafish chromosome has been maintained in a mouse background, based on multiple markers covering the entire chromosome. In addition to their use in mapping studies, this collection of somatic cell hybrids should constitute an important tool as a source of specific chromosome fragments and for assessing the function of genome regions.  相似文献   

4.
A mouse cDNA that confers susceptibility to ecotropic murine leukemia viruses following transfection into human EJ cells has been cloned and sequenced. We show that this sequence is likely to be Rec-1, the chromosome 5 locus originally defined by studies with somatic cell hybrids as responsible for virus susceptibility, and provide a specific chromosomal map position for this locus by analysis of an interspecies backcross. This locus maps in the distal region of chromosome 5 and is thus not within the cluster of retrovirus-related genes near the centromere.  相似文献   

5.
We have generated a panel of 55 somatic cell hybrids retaining fragments of human chromosome 4. Each hybrid has been characterized cytogenetically by FISH and molecularly by 37 STSs, evenly spaced along the chromosome. The panel can be exploited to map subregionally DNA sequences on chromosome 4 and to generate partial chromosome paints useful in the characterization of chromosomal rearrangements involving this chromosome. Furthermore, a panel of 84 YACs mapping on chromosome 4 has been characterized by FISH. A subset of this panel is recognized by STSs used in the somatic cell hybrid characterization. In this way a correlation between the genetic and the physical maps can be established. These resources have been used to investigate the conservation of the phylogenetic chromosome IV in great apes. The results indicate that all the pericentric inversions that differentiate chromosome IV in these species are distinct and that one of the breakpoints frequently lies very close to the centromere. In 4 instances, the YAC containing the breakpoint was identified. The breakpoint in IVq of PTR and MMU lies in the same YAC, suggesting that this breakpoint has been utilized twice in the evolutionary history of this chromosome.  相似文献   

6.
D S Gerhard  E Lawrence  J Wu  H Chua  N Ma  S Bland  C Jones 《Genomics》1992,13(4):1133-1142
The determination of the physical map of human chromosome 11 will require more clones than are currently available. We have isolated an additional 1001 new markers in a bacteriophage vector from a somatic cell hybrid cell line that contains most of chromosome 11, except the middle of the short arm. These markers were localized to five different regions, 11p15-pter, 11p12-cen, 11q11-q14, 11q14-q23, and 11q23-qter, by a panel of previously characterized somatic cell hybrids. The region 11q11-14 harbors genes that have been shown to be important in breast cancer, B-cell lymphomas, centrocytic lymphomas, asthma, and multiple endocrine neoplasia, type 1 (MEN1). To determine the positions of the recombinant clones located there, we developed a new series of radiation-reduced somatic cell hybrids. These hybrids, together with those previously characterized, allowed us to map the 11q11-q14 markers into 11 separate segregation groups.  相似文献   

7.
We have used Southern blot analysis of DNA from somatic cell hybrids to map the chromosomal location of the mouse L3T4 T cell differentiation antigen gene to chromosome 6. This finding is of interest because both L3T4 and the alternative T cell differentiation antigen Lyt-2 are homologous to kappa-immunoglobulin light chain-variable regions, and the genes encoding kappa and Lyt-2 are also located on mouse chromosome 6.  相似文献   

8.
A human T-cell antigen receptor beta chain gene maps to chromosome 7.   总被引:11,自引:2,他引:11       下载免费PDF全文
cDNA clones which encode the human and mouse T cell antigen receptor beta chain gene have previously been isolated. We have used a mouse cDNA clone to map the chromosomal position of a human beta chain gene. Southern blot analysis of DNA prepared from somatic cell hybrids has assigned this gene to chromosome 7. The use of a hybrid containing a chromosome 7 translocation has further localised this gene to the region 7q22-qter.  相似文献   

9.
M J Wagner  Y Ge  M Siciliano  D E Wells 《Genomics》1991,10(1):114-125
We have characterized a panel of somatic cell hybrids that carry fragments of human chromosome 8 and used this panel for the regional localization of anonymous clones derived from a chromosome 8 library. The hybrid panel includes 11 cell lines, which were characterized by Southern blot hybridization with chromosome 8-specific probes of known map location and by fluorescent in situ hybridization with a probe derived from a chromosome 8 library. The chromosome fragments in the hybrid cell lines divide the chromosome into 10 intervals. Using this mapping panel, we have mapped 56 newly derived anonymous clones to regions of chromosome 8. We have also obtained physical map locations for 7 loci from the genetic map of chromosome 8, thus aligning the genetic and physical maps of the chromosome.  相似文献   

10.
Summary The short arm of chromosome 11 carries genes involved in malformation syndromes, including the aniridia/genitourinary abnormalities/mental retardation (WAGR) syndrome and the Beckwith-Wiedemann syndrome, both of which are associated with an increased risk of childhood malignancy. Evidence comes from constitutional chromosomal aberrations and from losses of heterozygosity, limited to tumor cells, involving regions 11p13 and 11p15. In order to map the genes involved more precisely, we have fused a mouse cell line with cell lines from patients with constitutional deletions or translocations. Characterization of somatic cell hybrids with 11p-specific DNA markers has allowed us to subdivide the short arm into 11 subregions, 7 of which belong to band 11p13. We have thus defined the smallest region of overlap for the Wilms' tumor locus bracketed by the closest proximal and distal breakpoints in two of these hybrids. The region associated with the Beckwith-Wiedemann syndrome spans the region flanked by two 11p15.5 markers, HRAS1 and HBB. These hybrids also represent useful tools for mapping new markers to this region of the human genome.  相似文献   

11.
Human chromosome 21 has been analyzed by pulsed-field gel electrophoresis using somatic cell hybrids containing limited regions of the chromosome and greater than 60 unique sequence probes. Thirty-three independent NotI fragments have been identified, totalling 43 million bp. This must account for essentially the entire long arm, and therefore gaps remaining in the map must be small. The extent of the pulsed-field map has allowed the direct correlation of the physical map with the cytogenetic map: translocation breakpoints can be unambiguously positioned along the long arm and the distances between them measured in base pairs. Three breakpoints have been identified, providing physical confirmation of cytogenetic landmarks. Information on sequence organization has been obtained: (i) 60% of the unique sequence probes are located within 11 physical linkage groups which can be contained in only 20% of the long arm; (ii) 9/21 genes are clustered within 4%; (iii) translocation breakpoints appear to occur within CpG island regions, making their identification difficult by pulsed-field techniques. This analysis contributes to the human genome mapping effort, and provides information to guide the rapid investigation of the biology of chromosome 21.  相似文献   

12.
Conserved linkage groups have been found on the X and autosomal chromosomes in several mammalian species. The identification of conserved chromosomal regions has potential for predicting gene location in mammals, particularly in humans. The genes for human aminoacylase-1 (ACY1, N-acylamino acid aminohydrolase, E.C.3.5.1.14), an enzyme in amino acid metabolism, and beta-galactosidase-A (GLB1, E.C.3.2.1.23), deficient in GM1-gangliosidosis, have been assigned to human chromosome 3. Using human-mouse somatic cell hybrids segregating translocations of human chromosome 3, expression of both ACY1 and GLB1 correlated with the presence of the p21 leads to q21 region of chromosome 3. In a previous study, assignment of these genes to mouse chromosome 9 used mouse-Chinese hamster somatic cell hybrids, eliminating mouse chromosomes. To approximate the size of the conserved region in the mouse, experiments were performed with recombinant inbred mouse strains. An electrophoretic variant of ACY-1 in mouse strains was used to map the Acy-1 gene 10.7 map U from the beta-galactosidase locus. These data suggest that there is a region of homology within the p21 leads to q21 region of human chromosome 3 and a segment of mouse chromosome 9. Since the mouse transferrin gene (Trf) is closely linked to the aminoacylase and beta-galactosidase loci, we predict that the human transferrin (TF) gene is on chromosome 3.  相似文献   

13.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified.  相似文献   

14.
Cellular retinaldehyde-binding protein (CRALBP) has properties that suggest that it is involved in the visual process and, therefore, potentially with retinal diseases. A human cDNA probe has been used to map this gene to human chromosome 15q26 (somatic cell hybrids and in situ hybridization) and to mouse chromosome 7 by somatic cell hybrids.  相似文献   

15.
Ninety-nine loci have been assigned to river buffalo chromosomes, 67 of which are coding genes and 32 of which are anonymous DNA segments (microsatellites). Sixty-seven assignments were based on cosegregation of cellular markers in somatic cell hybrids (synteny), whereas 39 were based on in situ hybridization of fixed metaphase chromosomes with labeled DNA probes. Seven loci were assigned by both methods. Of the 67 assignments in somatic cell hybrids, 38 were based on polymerase chain reaction (PCR), 11 on isozyme electrophoresis, 10 on restriction endonuclease digestion of DNA, 4 on immunofluorescence, and 4 on chromosomal identification. A genetic marker or syntenic group has been assigned to each arm of the five submetacentric buffalo chromosomes as well as to the 19 acrocentric autosomes, and the X and Y chromosomes. These same markers map to the 29 cattle autosomes and the X and Y chromosomes, and without exception, cattle markers map to the buffalo chromosome or chromosomal region predicted from chromosome banding similarity.  相似文献   

16.
The induction of thymic lymphomas by Moloney murine leukemia virus in the rat is linked to provirus integration in at least four independent cellular DNA regions (Mlvi-1, Mlvi-2, Mlvi-3, and c-myc). Because sequences homologous to at least three of these regions (Mlvi-1, Mlvi-2, and c-myc) map to chromosome 15 in the mouse, the question was raised whether they are closely linked in the rat genome and whether provirus integration in any one of these regions affects the same functional domain in rat DNA. In this study, we identified the chromosomal map location of Mlvi-1, Mlvi-2, and Mlvi-3 in the rat by using mouse-rat somatic cell hybrids that lose the rat chromosomes. The results showed that Mlvi-1 maps similarly to c-myc to chromosome 7, and Mlvi-2 maps to chromosome 2. Mlvi-3 probably maps to chromosome 15. We conclude that Mlvi-1, Mlvi-2, and Mlvi-3 are separate and independent genetic loci. Although Mlvi-1 and c-myc map to the same chromosome, they are not related, as determined by hybridization and restriction endonuclease mapping. The chromosomal map location of Mlvi-1 to chromosome 7 and Mlvi-2 to chromosome 2 is interesting, since chromosomal aberrations involving these two chromosomes are reproducibly observed in rat neoplasias induced by a variety of agents.  相似文献   

17.
We describe a high-resolution radiation hybrid map of the region on human chromosome 22 containing the neurofibromatosis type 2 (NF2) gene. Eighty-five hamster-human somatic cell hybrids generated by X-irradiation and cell fusion were used to generate the radiation hybrid map. The presence or absence of 18 human chromosome 22-specific markers was determined in each hybrid by using Southern blot hybridization. Sixteen of the 18 markers were distinguishable by X-ray breakage in the radiation hybrids. Analysis of these data using two different mathematical models and two different statistical methods resulted in a single framework map consisting of 8 markers ordered with odds greater than 1000:1. The remaining nonframework markers were all localized to regions consisting of two adjoining intervals on the framework map with odds greater than 1000:1. Based on the RH map, the NF2 region of chromosome 22, defined by the flanking markers D22S1 and D22S28, is estimated to span a physical distance of approximately 6 Mb and is the most likely location for 9 of the 18 markers studied: D22S33, D22S41, D22S42, D22S46, D22S56, LIF, D22S37, D22S44, and D22S15.  相似文献   

18.
Constitutional and somatic chromosomal abnormalities of the chromosome 11p15 region are involved in an overgrowth malformation syndrome, the Beckwith-Wiedemann syndrome (BWS), and in several types of associated tumors. The bias in parental origin for the different etiologic forms of this syndrome and for loss of heterozygosity in the tumors suggests that a gene (or genes) mapping to this region undergoes genomic imprinting. However, the precise localization of the locus (or loci) for the BWS and associated tumors is still unknown and more markers are required. We therefore isolated 11p15 markers from two libraries: the first one obtained by microdissection of the chromosome 11p15.5 region and the second one, a phage library, constructed from a hybrid cell line containing this region as its sole human DNA. Of 19 microclones isolated from the microdissection library, 11 were evolutionarily conserved. Four phage clones were isolated; one (D11S774) detected a highly informative variable number of tandem repeats (VNTR) and another (D11S773) a biallelic polymorphism. These clones were sublocalized using a panel of somatic cell hybrids that defines eight physical intervals in 11p15.5. Twenty-one clones map to the distal interval that harbors the BWS locus.  相似文献   

19.
Interspecific somatic cell hybrids containing single human chromosomes are valuable reagents for localization of cloned genes and DNA fragments to specific chromosomes, for the development of chromosome-specific libraries, and for generation of hybrid cell lines containing subchromosomal regions. A CHO somatic cell hybrid containing a single, intact human chromosome 14 (MHR14) was developed and confirmed by LINE PCR amplification gel pattern, by Alu-517 PCR product dot blot hybridization, and by cytogenetic analysis. MHR14 will serve as the chromosome source for the development of a radiation map of human chromosome 14.  相似文献   

20.
High-resolution cytogenetic-based physical map of human chromosome 16   总被引:6,自引:0,他引:6  
About ScienceDirect 《Genomics》1992,13(4):1178-1185
A panel of 54 mouse/human somatic cell hybrids, each possessing various portions of chromosome 16, was constructed; 46 were constructed from naturally occurring rearrangements of this chromosome, which were ascertained in clinical cytogenetics laboratories, and a further 8 from rearrangements spontaneously arising during tissue culture. By mapping 235 DNA markers to this panel of hybrids, and in relation to four fragile sites and the centromere, a cytogenetic-based physical map of chromosome 16 with an average resolution of 1.6 Mb was generated. Included are 66 DNA markers that have been typed in the CEPH pedigrees, and these will allow the construction of a detailed correlation of the cytogenetic-based physical map and the genetic map of this chromosome. Cosmids from chromosome 16 that have been assembled into contigs by use of repetitive sequence fingerprinting have been mapped to the hybrid panel. Approximately 11% of the euchromatin is now both represented in such contigs and located on the cytogenetic-based physical map. This high-resolution cytogenetic-based physical map of chromosome 16 will provide the basis for the cloning of genetically mapped disease genes, genes disrupted in cytogenetic rearrangements that have produced abnormal phenotypes, and cancer breakpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号