首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The consensus acceptor exon: intron junction d(CpTpApCpApGpGpT) has been synthesized by a modified phosphotriester method. The non-self complementary octamer exists in the single strand form in aqueous buffer at 20°C as evidenced by temperature variable 1H-NMR and NOE measurements. The non-exchangeable proton assignments were secured using a combination of techniques including two-dimensional COSY, NOESY and the double quantum technique 1H-1H-INADEQUATE as well as inversion recovery T1 experiments. The new technique of 31P-1H shift correlation is particularly valuable in removing certain ambiguities in the sugar proton assignments. Characteristic chemical shifts for the base protons which are determined by their immediate molecular environments are also useful in assignments. The consensus acceptor exon: intron junction adopts a random coil conformation in solution under the experimental conditions employed.  相似文献   

2.
The complementary consensus acceptor exon:intron junction d(ApCpCpTpGpTpApG) has been synthesized by a modified phosphotriester method. The non self-complementary octamer exists in the random coil form in aqueous buffer at 20 degrees C as evidenced by temperature variable 1H-NMR and NOE measurements. The non-exchangeable proton assignments were secured using a combination of techniques including two-dimensional COSY, NOESY and 1H-1H-INADEQUATE. The octamer was annealed with the primary consensus sequence d(CpTpApCpApGpGpT). Confirmation of complete duplex formation was confirmed by detection and assignment of imino protons in D2O:H2O mixtures. Assignment of the non-exchangeable proton signals in the duplex consensus junction was then secured by a combination of two-dimensional COSY correlations, NOESY and NOE experiments. Determination of individual vicinal coupling constants in the component deoxyribose moieties permitted deduction of the population of S conformations in this sequence. It is concluded that the consensus acceptor junction exists in solution in a conformation belonging to the B family, and that the bases are oriented anti. In addition the deoxyribose moieties in the 5' regions exist predominantly in the S form (2'endo-3'exo) whereas those residues on or adjacent to the junction on the primary strand show more N character (2'exo-3'endo). The contiguous bases A5-G6 (adjacent to the junction) and A15-G16 are stacked more closely than the other neighbor bases in this duplex sequence. These subtle structural and conformational differences in the exon:intron junction may serve as recognition signals for these critical sites in the genome.  相似文献   

3.
Abstract

The complementary consensus acceptor exon:intron junction d(ApCpCpTpGpTpApG) has been synthesized by a modified phosphotriester method. The non self-complementary octamer exists in the random coil form in aqueous buffer at 20°C as evidenced by temperature variable 1H-NMR and NOE measurements. The non-exchangeable proton assignments were secured using a combination of techniques including two-dimensional COSY, NOESY and 1H-1H-INADEQUATE. The octamer was annealed with the primary consensus sequence d(CpTpApCpApGpGpT). Confirmation of complete duplex formation was confirmed by detection and assignment of imino protons in D2O:H2O mixtures. Assignment of the nonexchangeable proton signals in the duplex consensus junction was then secured by a combination of two-dimensional COSY correlations, NOESY and NOE experiments. Determination of individual vicinal coupling constants in the component deoxyribose moieties permitted deduction of the population of S conformations in this sequence. It is concluded that the consensus acceptor junction exists in solution in a conformation belonging to the B family, and that the bases are oriented anti. In addition the deoxyribose moieties in the 5′ regions exist predominantly in the S form (2′endo—3′exo) whereas those residues on or adjacent to the junction on the primary strand show more N character (2′exo—3′endo). The contiguous bases A5-G6 (adjacent to the junction) and A15-G16 are stacked more closely than the other neighbor bases in this duplex sequence. These subtle structural and conformational differences in the exon:intron junction may serve as recognition signals for these critical sites in the genome.  相似文献   

4.
The consensus donor exon:intron junction d(CpApGpGpTpApApGpT) has been synthesized by a modified phosphotriester method. The non-self-complementary nonamer has, in principle, only two G,C or four A,T points of self-recognition. The inference that it exists in the single strand form at 20 degrees C was confirmed by temperature variable 1H-NMR and NOE measurements. The proton assignments were secured using two-dimensional COSY which provided intra-nucleotide correlations, then NOE difference measurements as well as inversion recovery T1 experiments. Systematic procedures were developed for the assignment of the individual bases and their component protons based on the effects of molecular environment on chemical shifts. These latter procedures should be useful for the assignment of other random-coil single strand oligodeoxyribonucleotides.  相似文献   

5.
Abstract

The consensus donor exon:intron junction d(CpApGpGpTpApApGpT) has been synthesized by a modified phosphotriester method. The non-self-complementary nonamer has, in principle, only two G,C or four A,T points of self-recognition. The inference that it exists in the single strand form at 20°C was confirmed by temperature variable 1H-NMR and NOE measurements. The proton assignments were secured using two-dimensional COSY which provided intra-nucleotide correlations, then NOE difference measurements as well as inversion recovery T1 experiments. Systematic procedures were developed for the assignment of the individual bases and their component protons based on the effects of molecular environment on chemical shifts. These latter procedures should be useful for the assignment of other random-coil single strand oligodeoxyribonucleotides.  相似文献   

6.
Abstract

The high field 1H-NMR assignments of a single strand consensus donor exon: intron junction and that of the duplex splice domain has been achieved using 2D-NMR and additional techniques.  相似文献   

7.
8.
Group I self-splicing introns are present in the td, nrdB and sunY genes of bacteriophage T4. We previously reported that whereas the td intron is present in T2, T4 and T6, the nrdB intron is present in T4 only. These studies, which argue in favor of introns as mobile genetic elements, have been extended by defining the distribution of all three T4 introns in a more comprehensive collection of T2, T4 and T6 isolates. The three major findings are as follows: First, all three introns are inconsistently distributed throughout the T-even phage family. Second, different T2 isolates have different intron complements, with T2H and T2L having no detectable introns. Third, the intron open reading frames are inherited or lost as a unit with their respective flanking intron core elements. Furthermore, exon sequences flanking sites where introns are inserted in the T4 td, sunY and nrdB genes were determined for all the different T-even isolates studied. Six of eighteen residues surrounding the junction sequences are identical. In contrast, a comprehensive comparison of exon sequences in intron plus and intron minus variants of the sunY gene indicate that sequence changes are concentrated around the site of intron occurrence. This apparent paradox may be resolved by hypothesizing that the recombination events responsible for intron acquisition or loss require a consensus sequence, while these same events result in sequence heterogeneity around the site.  相似文献   

9.
10.
To evaluate the importance of the surrounding nucleotide sequence in the selection of a splice site for mRNA, we have carried out computer studies of eukaryotic protein genes whose entire nucleotide sequences were available. A splice site-like sequence that has a significant homology to the consensus splice junction sequences is frequently found within an intron and exon. It is found that the higher the homology of a candidate donor site sequence to the nine-nucleotide consensus sequence, the higher is its probability of being a donor site. For most of the donors, the stability of presumed base-pairing with U1-RNA is higher than that of donor-like sequences, if any, in the adjacent exon and intron. However, homology of a candidate acceptor sequence to the 15-nucleotide consensus is a poor criterion of an acceptor site. The presence of a sequence that could serve as a branch-point 18 to 37 nucleotides before an acceptor does not seem to be critical in distinguishing it from an acceptor-like sequence. For genes of human, rat, mouse and chicken, respectively, nucleotide frequencies around splice junctions of many genes have been calculated. They seem to be different at some positions around a donor site from species to species. The acceptors for these vertebrates have longer pyrimidine-rich regions than the previous consensus sequence. The newly derived nucleotide frequencies were used as the standard to calculate the weighted homology score of a candidate splice site sequence in a gene of the four species. This weighted homology score of the 40 to 60-nucleotide intron-exon sequence is a much better criterion of an acceptor. These results suggest that the most important signal in the selection of a splice resides in the surrounding nucleotide sequence. It is also suggested that the surrounding nucleotide sequence alone is not generally sufficient for the selection.  相似文献   

11.
Disease causing aberrations in both tuberous sclerosis predisposing genes, TSC1 and TSC2, comprise nearly every type of alteration with a predominance of small truncating mutations distributed over both genes. We performed an RNA based screening of the entire coding regions of both TSC genes applying the protein truncation test (PTT) and identified a high proportion of unusual splicing abnormalities affecting the TSC2 gene. Two cases exhibited different splice acceptor mutations in intron 9 (IVS9-15G-->A and IVS9-3C-->G) both accompanied by exon 10 skipping and simultaneous usage of a cryptic splice acceptor in exon 10. Another splice acceptor mutation (IVS38-18A-->G) destroyed the putative polypyrimidine structure in intron 38 and resulted in simultaneous intron retention and usage of a downstream cryptic splice acceptor in exon 39. Another patient bore a C-->T transition in intron 8 (IVS8+281C-->T) activating a splice donor site and resulting in the inclusion of a newly recognised exon in the mRNA followed by a premature stop. These splice variants deduced from experimental results are additionally supported by RNA secondary structure analysis based on free energy minimisation. Three of the reported splicing anomalies are due to sequence changes remote from exon/intron boundaries, described for the first time in TSC. These findings highlight the significance of investigating intronic changes and their consequences on the mRNA level as disease causing mutations in TSC.  相似文献   

12.
It has been previously observed that the intrinsically weak variant GC donor sites, in order to be recognized by the U2-type spliceosome, possess strong consensus sequences maximized for base pair formation with U1 and U5/U6 snRNAs. However, variability in signal strength is a fundamental mechanism for splice site selection in alternative splicing. Here we report human alternative GC-AG introns (for the first time from any species), and show that while constitutive GC-AG introns do possess strong signals at their donor sites, a large subset of alternative GC-AG introns possess weak consensus sequences at their donor sites. Surprisingly, this subset of alternative isoforms shows strong consensus at acceptor exon positions 1 and 2. The improved consensus at the acceptor exon can facilitate a strong interaction with U5 snRNA, which tethers the two exons for ligation during the second step of splicing. Further, these isoforms nearly always possess alternative acceptor sites and exhibit particularly weak polypyrimidine tracts characteristic of AG-dependent introns. The acceptor exon nucleotides are part of the consensus required for the U2AF35-mediated recognition of AG in such introns. Such improved consensus at acceptor exons is not found in either normal or alternative GT-AG introns having weak donor sites or weak polypyrimidine tracts. The changes probably reflect mechanisms that allow GC-AG alternative intron isoforms to cope with two conflicting requirements, namely an apparent need for differential splice strength to direct the choice of alternative sites and a need for improved donor signals to compensate for the central mismatch base pair (C-A) in the RNA duplex of U1 snRNA and the pre-mRNA. The other important findings include (i) one in every twenty alternative introns is a GC-AG intron, and (ii) three of every five observed GC-AG introns are alternative isoforms.  相似文献   

13.
14.
15.
In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branchpoints for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism by which alternative promoters can be coordinated with downstream alternative splicing.  相似文献   

16.
We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.  相似文献   

17.
Samples of genomic DNA from three unrelated American black infants having both biochemical and clinical features of classical infantile Tay-Sachs disease were sequenced following PCR amplification. A G----T transversion was observed in the AG acceptor splice site preceding exon 5 of the beta-hexosaminidase alpha-subunit gene in the first black family. This transversion changed the acceptor splice site from the consensus sequence, AG, to AT, thereby interfering with splicing at this intron 4/exon 5 junction. The proband was homozygous for this mutation; his mother and a brother are heterozygous. The same mutation was found in a second, apparently unrelated, black GM2-gangliosidosis patient. The second patient was a compound heterozygote, as only one allele carried this mutation. The mother and a brother in this second family are carriers for this mutation, while the father and a noncarrier sister are normal for this region of the gene. The third proband did not have this mutation; nor did the mother of a fourth black proband. Eight other independently ascertained non-black, non-Jewish, GM2-gangliosidosis families did not have this mutation. The observation of the same novel mutation in two unrelated black GM2-gangliosidosis patients indicates that the American black population has segregating within it at least one GM2-gangliosidosis mutation which may be specific to this population and not a result of migration.  相似文献   

18.
19.
Expression of the L1 region of adenovirus is temporally regulated by alternative splicing to yield two major RNAs encoding the 52- to 55-kilodalton (52-55K) and IIIa polypeptides. The distal acceptor site (IIIa) is utilized only during the late phase of infection, whereas the proximal site (52-55K) is used at both early and late times. Several parameters that might affect this alternative splicing were tested by using expression vectors carrying the L1 region or mutated versions of it. In the absence of a virus-encoded or -induced factor(s), only the 52-55K acceptor was used. Decreasing the distance between the donor and the IIIa acceptor had no effect. Removal of the 52-55K acceptor induced IIIa splicing slightly, implying competition between the two acceptors. Fusion of the IIIa exon to the 52-55K intron greatly enhanced splicing of the IIIa junction, suggesting that the IIIa exon does not contain sequences that inhibit splicing. Thus, the lack of splicing to the IIIa acceptor in the absence of a virus-encoded or -induced factor(s) is probably due to the absence of a favorable sequence and/or the presence of a negative element 5' of the IIIa splice junction, or both. The presence of several adenovirus gene products, including VA RNAs, the E2A DNA-binding protein, and the products of E1A and E1B genes, did not facilitate use of the IIIa acceptor. In contrast, the simian virus 40 early proteins, probably large T antigen, induced IIIa splicing. This result, together with those of earlier studies, suggest that T antigen plays a role in modulation of alternative RNA splicing.  相似文献   

20.
We have investigated the RNA structure of the region surrounding the muscle-specific exon 6B of the chicken beta-tropomyosin gene. We have used a variety of chemical and enzymatic probes: dimethylsulfate, N-cyclohexyl-N'-(2-(N-methylmorpholino)-ethyl)-carbodiimide-p-tolu enesulfonate) , RNase T1 and RNase V1. Lead acetate was also used to obtain some information on the tertiary structure of this region. Probing the wild-type sequence suggests a model involving one-stem and three-stem-loop structures in and around this exon. Two of these, hairpin I and stem III, have previously been implicated in repression of splicing of the intron following exon 6B in a HeLa nuclear extract. Stem I includes sequences at the beginning of exon 6B and stem III results from interaction of the intron upstream from exon 6B with sequences in the middle of the intron downstream from this exon (the intron whose splicing is repressed). Neither stem I nor stem III directly involves the consensus sequences (5' splice site, branch-point, 3' splice site) of the repressed intron. Probing RNAs that are derepressed for splicing of this intron show that there are structural changes around the 5' splice site and branch-point sequence that correlate with the derepression. This is true, despite the fact that the derepressed RNAs are altered in a region far from these consensus sequences. The most striking structural correlation with splicing capacity of the intron downstream from exon 6B is seen by probing with lead acetate. Lead ions cut RNA at specific residues; these sites are very sensitive to RNA tertiary structure. Repressed and derepressed RNAs show entirely different cleavage patterns after incubation with lead acetate. Remarkably, hybridizing a derepressed RNA with an RNA comprising the ascending arm of stem III not only re-establishes repression, but also converts the pattern of susceptibility to attack by lead ions over the whole molecule. We suggest that RNA conformation plays a role in keeping exon 6B from being spliced into non-muscle cell mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号