首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a non-standard design for a fixed dental implant, incorporating a soft layer which simulates the presence of the periodontal ligament (PDL). Instead of being aimed at causing an a priori defined stress/strain field within the surrounding bone, upon loading, such a design simply tries to better reproduce the natural tooth-PDL configuration. To do this, the mechanical properties of the internal layer match those of the PDL, determined experimentally to be strongly nonlinear. Three-dimensional finite element analyses show that the presence of such a layer produces (i) a prosthesis mobility very similar to that of a healthy tooth, for several loading conditions, and (ii) a stress/strain distribution substantially different from that arising, upon loading, around a conventional implant. The lack of knowledge of the real mechanical fields existing, under loading, in the bone around a healthy tooth makes it very difficult to state that the stress distribution produced by the modified implant is "better" than that produced by the standard one. Nevertheless, the comparison of the results obtained here, with those of previous refined analyses of the tooth-PDL-bone system, indicates that the modified implant tends to produce a stress distribution in the bone, upon loading, closer to "natural" than that given by the standard one, within the limits imposed by the presence of threads coupling the implant with the bone.  相似文献   

2.
We consider a non-standard design for a fixed dental implant, incorporating a soft layer which simulates the presence of the periodontal ligament (PDL). Instead of being aimed at causing an a priori defined stress/strain field within the surrounding bone, upon loading, such a design simply tries to better reproduce the natural tooth–PDL configuration. To do this, the mechanical properties of the internal layer match those of the PDL, determined experimentally to be strongly nonlinear. Three-dimensional finite element analyses show that the presence of such a layer produces (i) a prosthesis mobility very similar to that of a healthy tooth, for several loading conditions, and (ii) a stress/strain distribution substantially different from that arising, upon loading, around a conventional implant. The lack of knowledge of the real mechanical fields existing, under loading, in the bone around a healthy tooth makes it very difficult to state that the stress distribution produced by the modified implant is “better” than that produced by the standard one. Nevertheless, the comparison of the results obtained here, with those of previous refined analyses of the tooth–PDL–bone system, indicates that the modified implant tends to produce a stress distribution in the bone, upon loading, closer to “natural” than that given by the standard one, within the limits imposed by the presence of threads coupling the implant with the bone.  相似文献   

3.
In the surgical treatment of fractured femurs, the fracture is bridged by a medullary nail fixed in the bone with interlocking screws. Failure of bone substance in the region of the interlocking screws is the most common complication in the treatment of osteoporotic bone. With the aim of preventing this complication, an additional implant was developed. A finite element analysis of an ideal bone/implant system was carried out to investigate the role of the additional implant. Three defined finite element models were generated, and the associated stress situations compared. The first model is a standard fixation without the additional implant. In the second model, the additional implant is integrated within the bone/implant system. The third model uses a modified form of the additional implant. The results show that both additional implants reduce the stresses occurring, both in the bone substance and at the screws. The modified form of the additional implant proved to be the most favorable version. In the case of the original additional implant, the negative effect of the sharp edges of the thread was demonstrable.  相似文献   

4.
The study focused on the influence of the implant material stiffness on stress distribution and micromotion at the interface of bone defect implants. We hypothesized that a low-stiffness implant with a modulus closer to that of the surrounding trabecular bone would yield a more homogeneous stress distribution and less micromotion at the interface with the bony bed. To prove this hypothesis we generated a three-dimensional, non-linear, anisotropic finite element (FE) model. The FE model corresponded to a previously developed animal model in sheep. A prismatic implant filled a standardized defect in the load-bearing area of the trabecular bone beneath the tibial plateau. The interface was described by face-to-face contact elements, which allow press fits, friction, sliding, and gapping. We assumed a physiological load condition and calculated contact pressures, shear stresses, and shear movements at the interface for two implants of different stiffness (titanium: E=110GPa; composite: E=2.2GPa). The FE model showed that the stress distribution was more homogeneous for the low-stiffness implant. The maximum pressure for the composite implant (2.1 MPa) was lower than for the titanium implant (5.6 MPa). Contrary to our hypothesis, we found more micromotion for the composite (up to 6 microm) than for the titanium implant (up to 4.5 microm). However, for both implants peak stresses and micromotion were in a range that predicts adequate conditions for the osseointegration. This was confirmed by the histological results from the animal studies.  相似文献   

5.
Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue, as well as the selection of an appropriate implant in terms of architecture and material. In this paper, a finite element model of proximal femur was developed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis. Cementless stems made of titanium, two types of Functionally Graded Material (FGM) and flexible ‘iso-elastic’ material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone. The distributions of bone density, von Mises stress, and interface shear stress were obtained. All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur, but the degrees of stress shielding were different. The amount of bone loss caused by titanium implant was in agreement with the clinical observation. The FGM stems caused less bone loss than that of the titanium stem, in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively, and the interface shear stresses were more evenly distributed in the model with FGM I stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems. The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view. The next steps are to fabricate FGM stem and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.  相似文献   

6.
Good mechanical fixation of an implant to the surrounding bone is important for its longevity, and is influenced by both biological and mechanical factors. This study parametrically evaluates the mechanics of the interface with a computationally efficient analytic structural model of the shear stress field and global shear stiffness of an axially loaded implant. The utility of the analytic model was first established by validating its assumptions with a case-specific finite element model. We then used the analytic model for a sensitivity analysis of the relationship between the pattern of tissue growth and shear properties of the interface for our previously reported loaded in vivo experimental micromotion device. The bone located directly at the implant surface was found to be the most effective site for increasing interface stiffness. This suggests that the implant surface is the most desirable site for bone growth, yet is also the most mechanically challenging environment due to its maximal shear stresses. Thus, these findings support the further investigation of osteo-conductive coatings and other biological stimuli to overcome the challenging mechanics, and to promote bone growth directly at the implant surface. The model also demonstrated that the mechanical contribution to the global implant shear stiffness of a commonly observed isolated sclerotic bone rim is very limited. The results of this sensitivity analysis agree with experimental studies with the micromotion device, and with clinical studies reporting good results with osteo-conductive coatings.  相似文献   

7.
徐国皓  谷方  孙红丽  李婷  杨建军 《生物磁学》2013,(10):1878-1882
目的:应用三维有限元分析法研究牙种植体过盈植入对种植体-骨界面接触压力的影响。方法:选择直径为3.3 mm的ITI种植体和成人离体下颌骨,模拟种植体植入下颌骨内,过盈量为0.5 mm,建立三维有限元模型,应用ANSYS软件分析种植体-骨界面的应力分布情况。结果:种植体周围骨最大应力为48.796 MPa,应力分布均匀。种植体所受应力主要集中于颈部,最大应力值为87.832 MPa。结论:过盈量为0.5 mm时,种植体-骨界面所产生的应力值在骨组织所能承受的最大应力值范围内,种植体所受到的应力值远远小于钛的屈服强度,从生物力学角度,周围骨所受应力在骨组织能够承受范围,种植体也不会断裂,过盈联结在临床种植时有其可行性。  相似文献   

8.
The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone.The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem,flexible 'iso-elastic' stem,one-dimensional Functionally Graded Material (FGM) stem and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis.The distributions of bone density,von Mises stress,and interface shear stress were obtained.The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials,thus the host bone is well preserved.Accordingly,the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view.The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants,which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.  相似文献   

9.
In this paper the variation of normal and shear stresses along a path defined on the bone–dental implant interface is investigated. In particular, the effects of implant diameter, collar length and slope, body length, and the effects of four different types of external threads on the interfacial stress distribution are studied. The geometry of the bone is digitized from a CT scan of a mandibular incisor and the surrounding bone. The bone and the implant are assumed to be perfectly bonded. The finite element method with 2D plane strain assumption is used to compute interfacial stresses. Highest continuous interfacial stresses are encountered in the region where the implant collar engages the cortical region, and near the apex of the implant in the subcortical region. Stress concentrations in the interfacial stresses occur near the geometric discontinuities on the implant contour, and jumps in stress values occur where the elastic modulus of the bone transitions between the cortical and trabecular bone values. Among the six contour parameters, the slope and the length of the implant collar, and the implant diameter influence the interfacial stress levels the most, and the effects of changing these parameters are significantly noticed only in the cortical bone (alveolar ridge) area. External threads cause significant stress concentrations in interfacial stresses in otherwise smoothly varying regions. This work shows that the presence of external threads could cause significant variations in both normal and shear stresses along the bone–implant interface, but not reduction in shear stress as previously thought.  相似文献   

10.
Lower survival rates were observed for the implant placed in the anterior maxilla. The purpose of this study was to investigate the influence of different implant lengths on the stress distribution around osseointegrated implants under a static loading condition in the anterior maxilla using a three-dimensional finite element analysis. The diameter of 4.0 mm external type implants of different lengths (8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) was used in this study. The anterior maxilla was assumed to be D3 bone quality. All the material was assumed to be homogenous, isotropic and linearly elastic. The implant–bone interface was constructed using a rigid element for simulating the osseointegrated condition. Then, 176 N of static force was applied on the middle of the palatoincisal line angle of the abutment at a 120°angle to the long axis of abutment. The von Mises stress value was measured with an interval of 0.25 mm along the bone–implant interface. Incremental increase in implant length causes a gradual reduction of maximum and average von Mises stress at the labial portion within the implant. In the bone, higher stress was concentrated within cortical bone area and more distributed at the labial cortex, while cancellous bone showed relatively low stress concentration and even distribution. An increase in implant length reduced stress gradients at the cortical peri-implant region. Implant length affects the mechanisms of load transmission to the osseointegrated implant. On the basis of this study the biomechanical stress-based performance of implants placed in the anterior maxilla improves when using longer implants.  相似文献   

11.
The aim of this study was to analyze the biomechanics in an implant/tooth-supported system under different occlusal forces with rigid/non-rigid connectors by adopting a 3D non-linear finite element (FE) approach. A 3D FE model containing one Frialit-2 implant splinted to the mandibular second premolar was constructed. Contact elements (frictional surface) were used to simulate the realistic interface condition within the implant system and the sliding keyway stress-breaker function. The stress distributions in the splinting system and dissimilar mobility between natural tooth and implant with rigid and non-rigid connectors were observed for six loading types. The simulated results indicated that the lateral occlusal forces significantly increased the implant (sigma(I, max)), alveolar bone (sigma(AB, max)) and prosthesis (sigma(P, max)) stress values when compared with the axial occlusal forces. The sigma(I, max) and sigma(AB, max) values did not exhibit significant differences regardless of the connector type used. However, the sigma(P, max) values with a non-rigid connection increased more than two times those of the rigid connection. The sigma(I, max), sigma(AB, max) and sigma(P, max) stress values were significantly reduced in centric or lateral contact situations once the occlusal forces on the pontic were decreased. Moreover, the vertical-tooth-to-implant displacement ratios with a non-rigid connection were 23 and 9.9 times that for axial and lateral loads, respectively, applied on the premolar. However, the compensated non-rigid connector capabilities were not significant when occlusal forces acted on the complete prosthesis. The non-rigid connector (keyway device) only significantly exploited its function when the occlusal forces acted on a natural tooth. Minimizing the occlusal loading force on the pontic area through occlusal adjustment procedures to redistribute stress in the maximum intercuspation or lateral working position for an implant/tooth-supported prosthesis is recommended.  相似文献   

12.
A subject-specific three-dimensional finite element (FE) pelvic bone model has been developed and applied to the study of bone–cement interfacial response in cemented acetabular replacements. The pelvic bone model was developed from CT scan images of a cadaveric pelvis and validated against the experiment data obtained from the same specimen at a simulated single-legged stance. The model was then implanted with a cemented acetabular cup at selected positions to simulate some typical implant conditions due to the misplacement of the cup as well as a standard cup condition. For comparison purposes, a simplified FE model with homogeneous trabecular bone material properties was also generated and similar implant conditions were examined.The results from the homogeneous model are found to underestimate significantly both the peak von Mises stress and the area of the highly stressed region in the cement near the bone–cement interface, compared with those from the subject-specific model. Non-uniform cement thickness and non-standard cup orientation seem to elevate the highly stressed region as well as the peak stress near the bone–cement interface.  相似文献   

13.
Finite element analysis plays an important role in dental implant design. The objective of this study was to show the effect of the overall geometry of dental implants on their biomechanics after implantation. In this study, 12 dental implants, with the same length, diameter and screw design, were simulated from different implant systems. Numerical model of right mandibular incisor bone segment was generated from CT data. The von-Mises stress distributions and the total deformation distributions under vertical/lateral load were compared for each implant by scores ranking method. The implants with cylindrical shapes had highest scores. Results indicated that cylindrical shape represented better geometry over taper implant. This study is helpful in choosing the optimal dental implant for clinical application and also contributes to individual implant design. Our study could also provide reference for choice and modification of dental implant in any other insertion sites and bone qualities.  相似文献   

14.
Hip resurfacing demonstrates good survivorship as a treatment for young patients with osteoarthritis, but occasional implant loosening failures occur. On the femoral side there is radiographic evidence suggesting that the implant stem bears load, which is thought to lead to proximal stress shielding and adaptive bone remodelling. Previous attempts aimed at reproducing clinically observed bone adaptations in response to the implant have not recreated the full set of common radiographic changes, so a modified bone adaptation algorithm was developed in an attempt to replicate more closely the effects of the prosthesis on the host bone. The algorithm features combined implant–bone interface healing and continuum bone remodelling. It was observed that remodelling simulations that accounted for progressive gap filling at the implant–bone interface predicted the closest periprosthetic bone density changes to clinical X-rays and DEXA data. This model may contribute to improved understanding of clinical failure mechanisms with traditional hip resurfacing designs and enable more detailed pre-clinical analysis of new designs.  相似文献   

15.
《IRBM》2019,40(6):313-319
BackgroundIn a dental implant/bone system, the design factors affect the value and distributions of stress and deformations that plays a pivotal role on the stability, durability and lifespan of the implant/bone system.ObjectiveThe aim of this study was to compare the influence of different abutment designs on the biomechanical behavior of one-piece zirconia dental implants and their surrounding bone tissues using three-dimensional finite element analysis.MethodsA three-dimensional geometrical model of a zirconia dental implant and its surrounding bone tissue were created. The occlusal loading force applied to the prosthetic abutments was a combination of 114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial direction where these components represent masticatory force of 118.2 N in the angle of approximately 75° to the occlusal plane.ResultsThe system included implant abutment Model 01 showed a decrease of 9.58%, 9.92% and 3.62% at least in the average value of maximum von Mises stress compared to Model 02, Model 03 and Model 04 respectively. The results also showed that the system included implant abutment Model 01 decreases the average value of maximum deformation of 16.96%, 7.17% and 9.47% at least compared to Model 02, Model 03 and Model 04 respectively.ConclusionThe one-piece zirconia dental implant abutment Model 01 presents a better biomechanical behavior in the peri-implant bone than others. It can efficiently distribute the applied load and present more homogeneous behavior of stress distribution and has less deformation than others, which will enhance the stability of implant/bone system and prolong its lifespan.  相似文献   

16.
The aims of this study were to examine the effect of implant neck design and cortical bone thickness using 3D finite element analysis and to analyse the stability of clinical evidence based on micromotion and principal stress. Four commercial dental implants for a type IV bone and maxillary segments were created. Various parameters were considered, including the osseointegration condition, loading direction and cortical bone thickness. Micromotion and principal stresses were used to evaluate the failure of osseointegration and bone overloading, respectively. It was found that the maximum stress of the peri-implant bone decreased as cortical bone thickness increased. The micromotion level in full osseointegration is less than that in non-osseointegration and it also decreases as cortical bone thickness increases. The cortical bone thickness should be measured before surgery to help select a proper implant. In the early stage of implantation, the horizontal loading component induces stress concentration in bone around the implant neck more easily than does the vertical loading component, and this may result in crestal bone loss.  相似文献   

17.
Uncemented femoral total hip components rely entirely on contact with the prepared femur for their initial fixation. The contact areas and stresses between a straight tubular bone and a metal cylindrical prosthesis 12.5 cm long and 13 mm in diameter were calculated in a finite element model which includes uniform diametral gaps varying from 20 to 500 microns, using transverse loads from 100 to 2000 N. Frictionless three-dimensional contact elements were used between the bone and the prosthesis. Contact stresses were high and irregular in all cases, and the contact areas were small. Two regions of contact were apparent for lower loads and larger gaps. A third region of contact occurred near the distal tip of the implant at higher loads. This region of contact markedly increased the contact stresses at the distal tip of the prosthesis. A 20 microns overlap between bone and implant was modelled to assess a slight interference fit. The contact stress distribution in this case was markedly different from the stress distribution with a 20 microns diametral gap. The data collectively indicates that gaps of less than 20 microns between bone and implant can substantially change contact stress distributions.  相似文献   

18.
The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).  相似文献   

19.
Cementless surface replacement arthroplasty (CSRA) of the shoulder was designed to preserve the individual anatomy and humeral bone stock. A matter of concern in resurfacing implants remains the stress shielding and bone remodeling processes. The bone remodeling processes of two different CSRA fixation designs, conical-crown (Epoca RH) and central-stem (Copeland), were studied by three-dimensional (3-D) finite element analysis (FEA) as well as evaluation of contact radiographs from human CSRA retrievals. FEA included one native humerus model with a normal and one with a reduced bone stock quality. Compressive strains were evaluated before and after virtual CSRA implantation and the results were then compared to the bone remodeling and stress-shielding pattern of eight human CSRA retrievals (Epoca RH n=4 and Copeland n=4). FEA revealed for both bone stock models increased compressive strains at the stem and outer implant rim for both CSRA designs indicating an increased bone formation at those locations. Unloading of the bone was seen for both designs under the central implant shell (conical-crown 50–85%, central-stem 31–93%) indicating high bone resorption. Those effects appeared more pronounced for the reduced than for the normal bone stock model. The assumptions of the FEA were confirmed in the CSRA retrieval analysis which showed bone apposition at the outer implant rim and stems with highly reduced bone stock below the central implant shell. Overall, clear signs of stress shielding were observed for both CSRAs designs in the in vitro FEA and human retrieval analysis. Especially in the central part of both implant designs the bone stock was highly resorbed. The impact of these bone remodeling processes on the clinical outcome as well as long-term stability requires further evaluation.  相似文献   

20.
doi: 10.1111/j.1741‐2358.2011.00569.x Influence of different mucosal resiliency and denture reline on stress distribution in peri‐implant bone tissue during osseointegration. A three‐dimensional finite element analysis Objective: The aim of this study was to evaluate the influence of mucosal properties and relining material on the stress distribution in peri‐implant bone tissue during masticatory function with a conventional complete denture during the healing period through finite element analysis. Materials and Methods: Three‐dimensional models of a severely resorbed mandible with two recently placed implants in the anterior region were created and divided into the following situations: (i) conventional complete denture and (ii) relined denture with soft lining material. The mucosal tissue properties were divided into soft, resilient and hard. The models were exported to mechanical simulation software; two simulations were carried out with a load at the lower right canine (35 N) and the lower right first molar (50 N). Data were qualitatively evaluated using Maximum Principal Stress, in MPa, given by the software. Results: All models showed stress concentrations in the cortical bone corresponding to the cervical part of the implant. The mucosal properties influenced the stress in peri‐implant bone tissue showing a different performance according to the denture base material. The simulations with relined dentures showed lower values of stress concentration than conventional ones. Conclusions: It seems that the mucosal properties and denture reline have a high influence on the stress distribution in the peri‐implant bone during the healing period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号