共查询到20条相似文献,搜索用时 0 毫秒
1.
Conciliating biosafety with efficient gene transfer remains a constant concern in the development of retroviral vectors. Semliki Forest virus (SFV) replicons allow important retroviral vector production with interesting features. It is noteworthy that retroviruses have the ability to package Psi+ and, to some extent, Psi- cellular RNAs. Therefore, it was important to study the retroviral transfer of highly abundant SFV genomes expressing retroviral proteins. Here, we show that full-length SFV-vector replicons, with or without Psi, are efficiently packaged into retrovirus particles. Mechanistically, our data suggest that SFV packaging is the sum of its retroviral nucleocapsid-dependent recruitment together with a passive hijacking of membrane-anchored SFV replicon. A direct consequence of this phenomenon is the formation of particles harboring autonomous replicative abilities and contaminating vector preparations. Importantly, we confirm that retroviral SFV mobilization is not an exclusive feature of murine gamma retroviruses, since it is also observed using lentivectors. 相似文献
2.
RNA interference (RNAi) has recently shown promise as a mode of inhibition of slowly replicating viruses causing chronic diseases such as hepatitis C. To investigate whether RNAi is also feasible for rapidly growing RNA viruses such as alphaviruses, we tested the ability of expressed short hairpin RNAs (shRNAs) to inhibit the Semliki Forest virus (SFV), a rapidly replicating positive-strand RNA virus. Plasmids expressing shRNAs targeting SFV target sequences under the control of a human U6 promoter were introduced into BHK-21 cells. The targets included sequences encoding nonstructural (nsP1, 2, and 4) and structural (capsid) proteins as well as nonviral sequences serving as control targets. Twenty-four to 48 hours following transfection with shRNA plasmids, the cells were infected with replication-competent or replication-deficient recombinant SFV expressing green fluorescent protein (GFP) at a multiplicity of infection (MOI) of approximately 5. Viral replication was monitored by fluorescence microscopy and flow cytometry. Specific and marked reduction of viral replication was observed with shRNAs targeting nsP1 and nsP4. The degree of inhibition of the replication-deficient SFV was >or=70% over a 5-day period, a level similar to the transfection efficiency, suggesting complete inhibition of nonreplicating virus in the transfected cell population. However, only nsP1 shRNA was inhibitory against replication-competent SFV (approximately 30%-50% reduction), and this effect was transient. No inhibition was observed with control shRNAs. In contrast to the recent success of RNAi approaches for slowly growing viruses, these results illustrate the challenge of inhibiting very rapidly replicating RNA viruses by RNAi. However, the addition of RNAi approaches to other antiviral modalities might improve the response to acute infections. 相似文献
3.
Kujala P Ikäheimonen A Ehsani N Vihinen H Auvinen P Kääriäinen L 《Journal of virology》2001,75(8):3873-3884
The nonstructural (ns) proteins nsP1 to -4, the components of Semliki Forest virus (SFV) RNA polymerase, were localized in infected cells by confocal microscopy using double labeling with specific antisera against the individual ns proteins. All ns proteins were associated with large cytoplasmic vacuoles (CPV), the inner surfaces of which were covered by small invaginations, or spherules, typical of alphavirus infection. All ns proteins were localized by immuno-electron microscopy (EM) to the limiting membranes of CPV and to the spherules, together with newly labeled viral RNA. Along with earlier observations by EM-autoradiography (P. M. Grimley, I. K. Berezesky, and R. M. Friedman, J. Virol. 2:326–338, 1968), these results suggest that individual spherules represent template-associated RNA polymerase complexes. Immunoprecipitation of radiolabeled ns proteins showed that each antiserum precipitated the other three ns proteins, implying that they functioned as a complex. Double labeling with organelle-specific and anti-ns-protein antisera showed that CPV were derivatives of late endosomes and lysosomes. Indeed, CPV frequently contained endocytosed bovine serum albumin-coated gold particles, introduced into the medium at different times after infection. With time, increasing numbers of spherules were also observed on the cell surfaces; they were occasionally released into the medium, probably by secretory lysosomes. We suggest that the spherules arise by primary assembly of the RNA replication complexes at the plasma membrane, guided there by nsP1, which has affinity to lipids specific for the cytoplasmic leaflet of the plasma membrane. Endosomal recycling and fusion of CPV with the plasma membrane can circulate spherules between the plasma membrane and the endosomal-lysosomal compartment. 相似文献
4.
5.
Identification of mutations causing temperature-sensitive defects in Semliki Forest virus RNA synthesis
下载免费PDF全文

We have sequenced the nonstructural protein coding region of Semliki Forest virus temperature-sensitive (ts) mutant strains ts1, ts6, ts9, ts10, ts11, ts13, and ts14. In each case, the individual amino acid changes uncovered were transferred to the prototype strain background and thereby identified as the underlying cause of the altered RNA synthesis phenotype. All mutations mapping to the protease domain of nonstructural protein nsP2 caused defects in nonstructural polyprotein processing and subgenomic RNA synthesis, and all mutations in the helicase domain of nsP2 affected subgenomic RNA production. These types of defects were not associated with mutations in other nonstructural proteins. 相似文献
6.
Urban C Rhême C Maerz S Berg B Pick R Nitschke R Borner C 《Cell death and differentiation》2008,15(9):1396-1407
The RNA alphavirus Semliki Forest (SFV) triggers apoptosis in various mammalian cells, but it has remained controversial at what infection stage and by which signalling pathways host cells are killed. Both RNA synthesis-dependent and -independent initiation processes and mitochondrial as well as death receptor signalling pathways have been implicated. Here, we show that SFV-induced apoptosis is initiated at the level of RNA replication or thereafter. Moreover, by expressing antiapoptotic genes from recombinant SFV (replicons) and by using neutralizing reagents and gene-knockout cells, we provide clear evidence that SFV does not require CD95L-, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)- or tumor necrosis factor-mediated signalling but mitochondrial Bak to trigger cytochrome c release, the fall in the mitochondrial membrane potential, apoptotic protease-activating factor-1/caspase-9 apoptosome formation and caspase-3/-7 activation. Of seven BH3-only proteins tested, only Bid contributed to effective SFV-induced apoptosis. However, caspase-8 activation and Bid cleavage occurred downstream of Bax/Bak, indicating that truncated Bid formation serves to amplify rather than trigger SFV-induced apoptosis. Our data show that SFV sequentially activates a mitochondrial, Bak-mediated, caspase-8-dependent and Bid-mediated death signalling pathway that can be accurately dissected with gene-knockout cells and SFV replicons carrying antiapoptotic genes. 相似文献
7.
8.
Siu RW Fragkoudis R Simmonds P Donald CL Chase-Topping ME Barry G Attarzadeh-Yazdi G Rodriguez-Andres J Nash AA Merits A Fazakerley JK Kohl A 《Journal of virology》2011,85(6):2907-2917
RNA interference (RNAi) is an important mosquito defense mechanism against arbovirus infection. In this paper we study the processes underlying antiviral RNAi in Aedes albopictus-derived U4.4 mosquito cells infected with Semliki Forest virus (SFV) (Togaviridae; Alphavirus). The production of virus-derived small interfering RNAs (viRNAs) from viral double-stranded RNA (dsRNA) is a key event in this host response. dsRNA could be formed by RNA replication intermediates, by secondary structures in RNA genomes or antigenomes, or by both. Which of these dsRNAs is the substrate for the generation of viRNAs is a fundamental question. Here we used deep sequencing of viRNAs and bioinformatic analysis of RNA secondary structures to gain insights into the characteristics and origins of viRNAs. An asymmetric distribution of SFV-derived viRNAs with notable areas of high-level viRNA production (hot spots) and no or a low frequency of viRNA production (cold spots) along the length of the viral genome with a slight bias toward the production of genome-derived viRNAs over antigenome-derived viRNAs was observed. Bioinformatic analysis suggests that hot spots of viRNA production are rarely but not generally associated with putative secondary structures in the SFV genome, suggesting that most viRNAs are derived from replicative dsRNA. A pattern of viRNAs almost identical to those of A. albopictus cells was observed for Aedes aegypti-derived Aag2 cells, suggesting common mechanisms that lead to viRNA production. Hot-spot viRNAs were found to be significantly less efficient at mediating antiviral RNAi than cold-spot viRNAs, pointing toward a nucleic acid-based viral decoy mechanism to evade the RNAi response. 相似文献
9.
The distribution of phospholipids across the membrane bilayer of Semliki Forest virus grown in BHK cells has been examined by treating the virus with bee venom phospholipase A2 and sphingomyelinase C from Staphylococcus aureus. From the amounts of different phospholipids which are degraded rapidly (half-time about 1 min for phospholipase A2) we calculate that in virus isolated 16 h after infection about 95% of sphingomyelin, 55% of phosphatidylcholine, 20% of phosphatidylethanolamine and less then 5% of phosphatidylserine is present on the outer leaflet of the virus envelope. Less than 5% of the virus was permeable to macromolecules before or after treatment with phospholipases as judged by accessibility of the genome to external ribonuclease. A much slower (half-time about 1 h) breakdown by phospholipase A2 of originally inaccessible phosphatidylcholine and phosphatidylethanolamine appeared to be due to an enzyme-induced loss of lipid asymmetry since the original asymmetric distribution of phospholipids was maintained for several hours when the virus alone was incubated at 37°C. However, virus incubated for 20 h at 37°C showed a marked loss of phosphatidylethanolamine and phosphatidylserine asymmetry and a greater susceptibility to lysis by longer treatment with phospholipase A2. 相似文献
10.
Complementation in 26 S RNA synthesis between temperature-sensitive mutants of Semliki Forest virus 总被引:1,自引:0,他引:1
Sirkka Keränen 《FEBS letters》1977,80(1):164-168
11.
The phospholipids of Semliki Forest virus grown in mosquito cells (Aedes albopictus) were analyzed radiochemically. The ratio of 32P-labeled phospholipids to total 32P-label in the virus grown in mosquito cells equilibrated with radiophosphorus was 0.558 +/- 0.021. This value was similar to the lipid phosphorus: total phosphorus ratio (0.539 +/- 0.025) of the virus grown in the BHK cells. It is concluded that an average virion of the two types of Semliki Forest virus contains approximately the same number of phospholipid molecules. Phosphatidylethanolamine (62%), phosphatidylcholine (14%), phosphatidylserine (10%) and the ethanolamine analogue of sphingomyelin, ceramide phosphoethanolamine (9%) were the principal phospholipids in the mosquito cell-grown virus. Comparison with the lipids of virus grown in hamster cells (BHK cells) revealed that two-thirds of the polar structures were dissimilar. Surface labeling with formylmethionyl [35S] sulfone methylphosphate suggests that a relatively large fraction of ceramide phosphoethanolamine is located in the outer half of the lipid bilayer of the viral membrane. 相似文献
12.
A total of 115 clones of Aedes albopictus cells were examined for their response to infection with Semliki Forest virus. Virus yield and cytopathology showed a bimodal distribution. More than 68% of the clones gave low yields of virus (between 8 x 10(6) and 2 x 10(8) PFU/ml) with no discernable cytopathology, and 30% gave high yields of virus (between 1 x 10(9) and 8 x 10(9) PFU/ml) and showed moderate to severe cytopathology. To determine the level at which restriction in virus growth occurs in the low-virus-producing clones, we compared the nature and extent of several virus-directed events in selected low-virus-producing clones with the same events in high-virus-producing clones. Specifically, we compared virus-specified polypeptide synthesis, positive- and negative-strand RNA synthesis, adsorption, uncoating, and transfection with virion 42S RNA. These studies showed that whereas events before negative-strand RNA synthesis and all subsequent virus-specified events were markedly reduced in the low-virus-producing lines, compared with the high-virus-producing lines. Thus, the restriction in virus growth in the low-virus-producing lines occurs at the level of synthesis of negative-strand RNA. The consequence of this restriction in an early step in the virus multiplication cycle is discussed in terms of the survival of invertebrate cells after alphavirus infection. 相似文献
13.
Temperature-dependent internalization of virus glycoproteins in cells infected with a mutant of Semliki Forest virus. 总被引:6,自引:0,他引:6
下载免费PDF全文

When the ts-1 mutant of Semliki Forest virus (SFV) was grown in chick embryo or BHK 21 cells at the restrictive temperature (39 degrees C), its membrane glycoproteins were arrested in the endoplasmic reticulum, but started to migrate to the cell surface once the cultures were shifted to the permissive temperature (28 degrees C). If the temperature of infected cells was raised back to 39 degrees C, ts-1 glycoproteins disappeared from the cell surface as evidenced by loss of surface immunofluorescence and by radioimmunoassay based on the binding of 125I-labeled protein A. This phenomenon was specific for ts-1 at 39 degrees C as it was observed neither in cells infected with wild-type SFV at 39 degrees C nor with ts-1 at 28 degrees C. The disappearance of the ts-1 glycoproteins was due to internalization. The internalized proteins were digested, as shown by specific decrease of virus glycoproteins labelled with [35S]methionine at 39 degrees C before shift to 28 degrees C, and by concomitant release of acid soluble 35S-activity into the culture medium. Ts-1 infected cells were treated before shift back to 39 degrees C with Fab' fragments, prepared from IgG against the viral membrane glycoproteins. After shift back to 39 degrees C, the Fab' fragments disappeared from the cell surface. In the presence of chloroquine, they could be visualized in vesicular structures, using an anti-IgG-fluorescein isothiocyanate conjugate. The internalization of ts-1 glycoproteins was not inhibited by carbonylcyanide p-trifluoromethoxy phenylhydrazone, chloroquine, cytochalasin B, vinblastine, colcemid, or monensin. 相似文献
14.
Semliki Forest virus (SFV) and many other enveloped animal viruses enter cells by a membrane fusion reaction triggered by the low pH within the endocytic pathway. In vitro, SFV fusion requires cholesterol in the target membrane, but the role of cholesterol in vivo is unknown. In this paper, the infection pathway of SFV was studied in mammalian and inset cells substantially depleted of sterol. Cholesterol-depleted cells were unaltered in their ability to bind, internalize, and acidify virus, but were blocked in SFV fusion and subsequent virus replication. Depleted cells could be infected by the cholesterol-independent vesicular stomatitis virus, which also enters cells via endocytosis and low pH-mediated fusion. The block in SFV infection was specifically reversed by cholesterol but not by cholestenone, which lacks the critical 3 beta-hydroxyl group. Cholesterol thus is central in the infection pathway of SFV, and may act in vivo to modulate infection by SFV and other pathogens. 相似文献
15.
16.
RNA interference in mammalian cells by chemically-modified RNA 总被引:24,自引:0,他引:24
RNA interference (RNAi) is proving to be a robust and versatile technique for controlling gene expression in mammalian cells. To fully realize its potential in vivo, however, it may be necessary to introduce chemical modifications to optimize potency, stability, and pharmacokinetic properties. Here, we test the effects of chemical modifications on RNA stability and inhibition of gene expression. We find that RNA duplexes containing either phosphodiester or varying numbers of phosphorothioate linkages are remarkably stable during prolonged incubations in serum. Treatment of cells with RNA duplexes containing phosphorothioate linkages leads to selective inhibition of gene expression. RNAi also tolerates the introduction of 2'-deoxy-2'-fluorouridine or locked nucleic acid (LNA) nucleotides. Introduction of LNA nucleotides also substantially increases the thermal stability of modified RNA duplexes without compromising the efficiency of RNAi. These results suggest that inhibition of gene expression by RNAi is compatible with a broad spectrum of chemical modifications to the duplex, affording a wide range of useful options for probing the mechanism of RNAi and for improving RNA interference in vivo. 相似文献
17.
18.
An analysis of the human leukemia cell line, K-562, infected with Semliki Forest virus, has been made with transmission electron microscopy. In contrast to the usual surface budding of the enveloped virus on the plasma membrane of vertebrate cells leading to cytolysis within 20 h, K-562 cells do not show surface budding, and the cells remain intact for periods of several months. Several unusual features of the infection include: 1) the rough endoplasmic reticulum arranges early into continuous perinuclear chains; 2) during the time of virus replication and release, the nucleocapsids aggregate on the cytoplasmic side of internal vesicles in the region of the cell where the Golgi complex is normally located; and 3) during this same time period, the vesicles are seen to contain enveloped virions and rod-like formations, a result suggesting that budding has occurred into these vesicles. Viruses are presumably released from the cell as these vesicles fuse with the plasma membrane. By 12 days post-infection and thereafter, the intact cells show electron-dense aggregates of chromatin, large vacuoles and lipid inclusions throughout the cytoplasm, and only a few virion-containing vesicles. 相似文献
19.
Shamotienko O Akhtar S Sidera C Meunier FA Ink B Weir M Dolly JO 《Biochemistry》1999,38(51):16766-16776
The multiple roles of voltage-sensitive K(+) channels (Kv1 subfamily) in brain are served by subtypes containing pore-forming alpha (1.1-1.6) and auxiliary beta subunits, usually in an (alpha)(4)(beta)(4) stoichiometry. To facilitate structure/activity analysis, combinations that are prevalent in neurones and susceptible to alpha-dendrotoxin (alphaDTX) were reproduced in mammalian cells, using Semliki Forest virus. Infected Chinese hamster ovary cells expressed N-glycosylated Kv1.1 and 1.2 alpha subunits (M(r) approximately 60 and 62 K) that assembled and bound [(125)I]-alphaDTX with high affinity; an appreciable proportion appeared on the cell surface, with Kv1.2 showing a 5-fold enrichment in a plasma membrane fraction. To obtain 'native-like' alpha/beta complexes, beta1.1 or 2.1 (M(r) approximately 42 and 39 K, respectively) was co-expressed with Kv1.1 or 1.2. This slightly enhanced N-glycosylation and toxin binding, most notable with beta2. 1 and Kv1.2. Solubilization of membranes from cells infected with Kv. 1.2 and beta2.1, followed by Ni(2+) chromatography, gave a purified alpha1.2/beta2.1 complex with a size of approximately 405 K and S(20, W) = 15.8 S. Importantly, these values indicate that four alpha and beta subunits co-assembled as in neurones, a conclusion supported by the size ( approximately 260 K) of the homo-tetramer formed by Kv1.2 alone. Thus, an authentic K(+) channel octomer has been reconstructed; oligomeric species were also found in plasma membranes. To create 'authentic-like' hetero-oligomeric channels, Kv1.1 and 1.2 were co-expressed and shown to have assembled by the precipitation of both with IgGs specific for either. Consistently, confocal microscopy of cells labeled with these antibodies showed that the relatively low surface content of Kv1.1 was increased by Kv1.2. [(125)I]-alphaDTX binding to these complexes was antagonized by DTX(k), a probe selective for Kv1.1, in a manner that mimicks the pattern observed for the Kv1.1/1.2-containing channels in neuronal membranes. 相似文献
20.
Protein synthesis in cells infected with Semliki Forest virus is not controlled by intracellular cation changes 总被引:1,自引:0,他引:1
Treatment of BHK cells with 1 microM nigericin results in a 55% decrease in K+ and a 3.3-fold increase in intracellular Na+; protein synthesis under these conditions is depressed by 35%. In BHK cells infected with Semliki Forest virus (SFV), protein synthesis is depressed by 76% 6.5 h after infection; intracellular K+ is unchanged, and intracellular Na+ is increased 1.8-fold at this time. These results suggest that the increase in intracellular Na+ in SFV-infected BHK cells does not adequately account for the decrease in protein synthesis, and makes it likely that an increased Na+ concentration is a consequence, not a cause, of alterations in protein synthesis in virally-infected cells. No evidence was obtained for the purported [Alonso, M. A. and Carrasco, L. (1980) Eur. J. Biochem. 109, 535-540; (1981) Eur. J. Biochem. 118, 289-294; (1981) FEBS Lett. 127, 112-114] ability of 1 microM nigericin to permeabilize' cells. 相似文献