首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
1. An unknown biotin vitamer was obtained in high yields in culture filtrates of Penicillium chrysogenum. 2. Production of this vitamer and desthiobiotin is controlled by the biotin concentration in the medium. 3. The unknown vitamer becomes labelled when the organism is grown in the presence of radioactive pimelic acid. 4. Chromatographic procedures were developed for the purification of the radioactive vitamer. 5. The vitamer is extremely stable in concentrated acid but gives rise to new vitamers under certain conditions. 6. The intermediate role of this vitamer in the synthesis of biotin is discussed.  相似文献   

2.
Use of a yeast-lactobacillus differential microbiological assay permitted investigation into the synthesis of biotin vitamers by a variety of bacteria. A major portion of the biotin activity was found extracellularly. The level of total biotin (assayable with yeast) greatly exceeded the level of true biotin (assayed with lactobacillus). Values for intracellular biotin generally showed good agreement between the assays, suggesting the presence of only true biotin within the cells. Bioautographic analysis of the medium after growth of each organism revealed the presence of large amounts of a vitamer which corresponded to dl-desthiobiotin on the basis of Rf value and biological activity. Biotin, when detected at all, was at very low concentrations. Also, an avidin-uncombinable vitamer was synthesized by a majority of the bacteria. Addition of d-biotin to the growth medium prevented completely the synthesis of both vitamers of biotin. d-Biotin-d-sulfoxide had no effect on the synthesis of desthiobiotin or the avidin-uncombinable vitamer. Addition of dl-desthiobiotin did not prevent its own synthesis nor that of the other vitamer. Control of vitamer synthesis is therefore highly specific for d-biotin. The avidin-uncombinable vitamer was produced only at repressed levels in the presence of high concentrations of both d-biotin and dl-desthiobiotin, which suggested that it is not a degradation product of these substances. A possible mechanism for the overproduction of the biosynthetic precursors of biotin is presented.  相似文献   

3.
Birnbaum, Jerome (University of Cincinnati, Cinncinati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. II. Further studies on the conversion of d-biotin to biotin vitamers by Lactobacillus plantarum. J. Bacteriol. 92:913-919. 1966.-Lactobacillus plantarum growing in excess biotin converts a portion to two vitamers (combinable and uncombinable with avidin) not utilizable for growth. These were detected by differential yeast-lactobacillus assay. In the present study, suspensions of 12- and 72-hr cells showed no converting activity. Vitamer formation by nonproliferating 24-hr cells required glucose and exhibited a lag; 17-hr cells showed neither a lag nor a glucose requirement. Iodoacetate and chloramphenicol inhibited vitamer formation by 24-hr cells, but had no effect on 17-hr cells. Addition of hydrolyzed casein or preincubation in biotin decreased the lag and enhanced vitamer formation in 24-hr cells, but had no effect in 17-hr cells. Apparently, 17-hr cells contain the converting enzymes which degenerate as growth proceeds; the lag exhibited by 24-hr cells represents the time necessary to reform the enzymes. Equal amounts of the two vitamers were formed in 17-hr cells; only the avidin-combinable form was produced initially by 24-hr cells, unless hydrolyzed casein was present. Electrophoresis revealed that the avidin-combinable vitamer has the same charge as biotin,whereas the uncombinable form possesses both positive and negative groups. Column chromatography was used to separate the avidin uncombinable material from biotin and the avidin-combinable form. L. plantarum was unable to accumulate the avidin-uncombinable vitamer under conditions permitting good biotin accumulation. It was concluded that L. plantarum sequentially converts biotin to avidin-combinable and -uncombinable vitamers, the latter being impermeable to the cells.  相似文献   

4.
The hydrocarbon utilizing yeast Yarrowia lipolyyica NCYC 1421 produces biotin and its vitamers when grown on glucose in biotin-free media. Levels of production can be influenced by the medium composition. Growth in the presence of longchained fatty acids greatly increases biotin vitamer production. The biotin vitamers produced are normally dethiobiotin and 7-keto, 8-aminopelargonic acid. The addition of succinic acid at 0.5 g per litre causes the vitamer 7, 8-diaminopelargonic acid to be produced at high levels. The biotin antagonist α-dehydrobiotin inhibits the growth of Yarrowia lipolytica . Mutants can be readily isolated which show resistance to α-dehydrobiotin, but these do not produce greater amounts of biotin or its vitamers.  相似文献   

5.
Biotin auxotrophs were isolated from Escherichia coli K-12. One of the mutants was unable to grow on desthiobiotin and accumulated a large amount of a vitamer in medium when growing on an optimal concentration of biotin. The production of the vitamer was inhibited in the presence of an excess amount of biotin. The vitamer was identified as desthiobiotin on the basis of biological activities, avidin combinability, and chromatographic characteristics. The mutant lacked the ability to convert desthiobiotin to biotin. These results further support the hypothesis that desthiobiotin is a normal intermediate in the biosynthesis of biotin in E. coli.  相似文献   

6.
A quantitative screening procedure for biotin and biotin vitamer production was conducted on 129 yeast strains able to grow in a biotin-free medium. Production of biotin and biotin vitamers varied considerably from strain to strain even within a species. The best producers of biotin were strains of Sporobolomyces roseus and Rhodotorula rubra whilst strains of Rhodotorula rubra and Yarrowia lipolytica produced the largest amounts of vitamers.  相似文献   

7.
The enzymatic synthesis of 7-oxo-8-aminopelargonic acid (7-KAP) from pimelyl-coenzyme A and l-alanine was demonstrated in cell-free extracts of a biotin mutant of Escherichia coli K-12 which excretes only 7-KAP into the growth medium. This biotin vitamer was identified by its chromatographic and electrophoretic properties. The enzyme (7-KAP synthetase) was repressed when the organism was grown in biotin concentrations greater than 0.2 ng/ml. The parent strain and members of other mutant groups that excrete 7-KAP, in addition to other vitamers, also exhibited synthetase activity. A mutant group that failed to excrete 7-KAP was further sub-divided into three groups, one of which lacked synthetase activity. These results are discussed in relation to a previously proposed scheme for biotin biosynthesis in which the formation of 7-KAP is considered the point of entry for pimelic acid into the biotin pathway.  相似文献   

8.
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.Subject terms: Water microbiology, Ecosystem ecology, Marine microbiology  相似文献   

9.
Mutations in the birA gene of Escherichia coli cause defects in biotin operon repression, biotin uptake and retention of intracellular biotin (Campbell et al., 1972: Barker &, Campbell, 1980). We report here that the birA gene encodes the major biotin-fixing enzyme of this organism, the acetyl-CoA carboxylase biotin holoenzyme synthetase (EC 6.3.4.15). Unlike the situation in wild-type E. coli extracts, measurements of labeled biotin incorporation into protein in sonicated extracts reveal no in vitro activity. Three different mutants exhibit altered holoenzyme synthetase activity, including one clear instance of a thermolabile activity specified by birA361.Amplification of birA gene expression by infection of cells with a λ phage bearing an EcoRI fragment of the E. coli chromosome which includes the gene results in a 20- to 40-fold increase in specific activity. When the λbirA phage carries the birA85 mutation, no activity increase is observed. Infection of cells with a λbirA361 transducing phage results in a 20- to 40-fold increase in temperature-sensitive activity. We have purified the activity specified by birA361 approximately 1000-fold and have shown that the purified enzyme is more thermolabile than similarly purified wild-type enzyme.Measurements of holoenzyme synthetase in extracts and biotin uptake by whole cells indicate that certain mutations located at the same chromosomal position as birA mutations but initially characterized as defective only in bio repression are also deficient in biotin holoenzyme synthetase and biotin uptake. This result indicates that all mutations at this location affect the same enzyme, and we have redesignated these “bioR” mutations as birA. Results of complementation analysis of birA mutations and biochemical characterization of the gene and its product, presented in the accompanying paper, support the view that the birA product functions both as the bio repressor and biotin holoenzyme synthetase.  相似文献   

10.
During the course of our investigations on the metabolism of d-biotin by microorganism, it has been found that some strains of fungi belonging to the genera Rhodotorula, Penicillium and Endomycopsis, are able to degrade d-biotin oxidatively into various biotin vitamers. The present work was undertaken to characterize these vitamers. The vitamers formed were separated by the ion exchange column chromatography, into Fraction A (d-biotin sulfoxide), Fraction B (unknown vitamer II), Fraction C (d-biotin) and Fraction D (unknown vitamer I). Rf values of vitamer I and vitamer II were found to be different from those of the known biotin vitamers. The vitamers I and II did not support the growth of Lactobacillus arabinosus and Saccharomyces cerevisiae, but did support that of Bacillus subtilis. This degradation reaction occurred rather favorably in high aerobic condition.  相似文献   

11.
We have examined the effect of alterations in the biotin content of the medium on the growth, viability, biotin content, and the activities of biotin-dependent and biotin-independent enzymes of the HeLa cells. The inclusion in the growth medium of avidin, which almost irreversibly binds with biotin (Kd, 10?15 M), results in an increase in cellular biotin content and biotin enzyme activity over that seen when the cells are grown in a biotin-depleted medium. The addition of avidin-bound biotin to the growth medium led to a forty-fold increase in cellular biotin when compared to the inclusion of an equivalent amount of free biotin in the medium. HeLa cells are able to internalize avidin-bound biotin. Biotin is released from this complex to function as the prosthetic group of biotin enzymes. HeLa cells do have a nutritional requirement for biotin.  相似文献   

12.
An enzymatic method for the quantitative determination of biotin has been developed. The method involves the enzymatic binding of biotin in situ to the pyruvate carboxylase apoprotein of biotin-deficient bakers' yeast and the subsequent estimation of the pyruvate carboxylase activity by a 14CO2-fixation method. The method is specific for biotin. Several biotin analogs and precursors were tested, and only biocytin was found to interfere, Biotin amounts of less than 5 pg can be estimated.  相似文献   

13.
During the course of the study on the production of biotin from desthiobiotin by microorganisms, the present authors have found that some strains of molds produced an unknown biotin-vitamer (BS-factor) from desthiobiotin. The present investigation was undertaken to clarify the characteristics of the unknown vitamer. The unknown vitamer produced from desthiobiotin was isolated in crystalline form from culture filtrate of Aspergillus oryzae. The compound isolated was identified as 4-methyl-5-(ω-carboxybutyl)-imidazolidone-2 by the physico-chemical procedures.

The biosynthesis of biotin-vitamers by resting cell system of Bacillus sphaericus was studied.

It was found that pimelic acid was essential substrate in biosynthesis of biotin-vitamers and that some amino acids and organic acids stimulated the biosynthesis of biotin-vitamers from pimelic acid. Alanine was found to be most effective. It was assumed that, in the presence of pimelic acid, some amino acids, especially alanine, and some organic acids play an important role in the biosynthesis of biotin-vitamers.

The main component of the biotin-vitamers synthesized by the resting cell system was identified as desthiobiotin. The existence of a small amount of unknown biotin-vitamer, an avidin-uncombinable substance, which was assumed to be 7-keto-8-amino-pelargonic acid, was also observed. True biotin was hardly observed in any conditions tested.  相似文献   

14.
We have examined the effect of biotin deficiency on the growth, viability, biotin content, and the activities of biotin-dependent and biotin-independent enzymes of human fibroblasts. There was a significant decrease in viability of the biotin-deficient cells even when the medium contained serum lipids. Propionyl CoA carboxylase activity reflected the decreased biotin content of the cells whereas alkaline phosphatase activity was not altered. The inclusion of avidin bound biotin in the growth medium resulted in an increase in biotin content as well as propionyl CoA carboxylase activity over that seen when free biotin was included in the medium. The cells appeared to bind and internalize the avidin-biotin complex by adsorptive pinocytosis. These findings are similar to those demonstrated using HeLa cells.  相似文献   

15.

Background

Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC.

Methodology/Principal Findings

BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the ∼29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5′AMP liganded forms. This was confirmed by molecular weight profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5′AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5′AMP. Docking simulations also suggest that bio-5′AMP hydrogen bonds to the conserved ‘GRGRRG’ sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The Km for BCCP was ∼5.2 µM and ∼420 nM for biotin. MtBPL has low affinity (Kb = 1.06×10−6 M) for biotin relative to EcBirA but their Km are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5′AMP by EcBirA is channeled for its repressor activity.

Conclusions/Significance

These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.  相似文献   

16.
Biotin derivatives with biotin activity for some biotin-requiring microorganisms have been isolated in crystalline form from the culture filtrate of strain 194, identified as Rhodotorula flava. The crystalline vitamer was identified as d-biotinamide.  相似文献   

17.
Acetyl-CoA carboxylase catalyzes the first committed step in the biosynthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase activity, a biotin carboxyl carrier protein, and a carboxyltransferase activity. The C-terminal 87 amino acids of the biotin carboxyl carrier protein (BCCP87) form a domain that can be independently expressed, biotinylated, and purified (Chapman-Smith, A., Turner, D. L., Cronan, J. E., Morris, T. W., and Wallace, J. C. (1994) Biochem. J. 302, 881-887). The ability of the biotinylated form of this 87-residue protein (holoBCCP87) to act as a substrate for biotin carboxylase and carboxyltransferase was assessed and compared with the results with free biotin. In the case of biotin carboxylase holoBCCP87 was an excellent substrate with a K(m) of 0.16 +/- 0.05 mM and V(max) of 1000.8 +/- 182.0 min(-1). The V/K or catalytic efficiency of biotin carboxylase with holoBCCP87 as substrate was 8000-fold greater than with biotin as substrate. Stimulation of the ATP synthesis reaction of biotin carboxylase where carbamyl phosphate reacted with ADP by holoBCCP87 was 5-fold greater than with an equivalent amount of biotin. The interaction of holoBCCP87 with carboxyltransferase was characterized in the reverse direction where malonyl-CoA reacted with holoBCCP87 to form acetyl-CoA and carboxyholoBCCP87. The K(m) for holoBCCP87 was 0.45 +/- 0.07 mM while the V(max) was 2031.8 +/- 231.0 min(-1). The V/K or catalytic efficiency of carboxyltransferase with holoBCCP87 as substrate is 2000-fold greater than with biotin as substrate.  相似文献   

18.
1. Filtrates from cultures of a strain of Pseudomonas aeruginosa, grown in a basal glucose-ammonium chloride-vitamins-salts medium, possessed biotin activity as detected by microbiological assays. Exponential-phase culture filtrates contained biotin and desthiobiotin in the approximate ratio 1:3, with smaller amounts of biotin sulphoxide and three unidentified compounds with biotin activity. 2. The addition of malonate, adipate or pimelate to the basal medium stimulated the production of compounds with biotin activity; this effect was enhanced when these compounds were included in the medium as the major carbon source. Succinate, glutarate, suberate, fumarate or oxaloacetate did not stimulate the production of compounds with biotin activity. The ratio of biotin to desthiobiotin in filtrates from cultures grown in medium containing malonate as the carbon source was about 1:1. Experiments in which mixtures of malonate and pimelate were included in the medium as the carbon sources showed that these acids probably make a similar contribution in biotin biosynthesis. 3. A number of heterocyclic compounds, including several containing the ureido group (-NH-CO-NH-), were included in the basal medium but none of them stimulated the production of compounds with biotin activity to any marked degree. 4. Several amino acids, particularly cysteine (or cystine) and lysine, when added individually as supplements to the basal medium, stimulated the production of compounds with biotin activity. Filtrates from cultures grown in medium supplemented with cysteine contained approximately equal proportions of biotin and desthiobiotin. A much greater stimulation in the production of compounds with biotin activity was obtained when certain amino acids were included in the medium as the major source of nitrogen or carbon and nitrogen; ornithine, citrulline and argininosuccinate had the most marked effect. The ratio of biotin to desthiobiotin in filtrates from these cultures was usually greater than in filtrates from cultures grown in basal medium. 5-Aminovalerate also caused some stimulation when used as the nitrogen source, but urea was inactive. The effect of binary mixtures of certain amino acids was also examined. 5. The results are discussed in relation to the possible role of the stimulatory compounds during biotin biosynthesis.  相似文献   

19.
Lesions at the birA locus of Escherichia coli produce, in varying degrees, derepression of the biotin operon and an increased minimum biotin growth requirement (Barker &; Campbell, 1980) as well as diminished biotin uptake and defective biotin holoenzyme synthetase activity (Campbell et al., 1972, 1980). In the accompanying paper, we showed that three birA mutants produce biotin holoenzyme synthetase with altered in vitro properties and that they carry lesions in the structural gene for this enzyme. The pleiotropic birA defect was attributed to structural interactions between a protein domain which includes the holoenzyme synthetase active site and a second protein domain, possibly part of the same polypeptide, which functions as the bio repressor.To determine if one or more genes reside at birA, we tested pairwise combinations of nine mutations with representative phenotypes for their ability to establish repression of bio expression. The mutations define a single complementation group. Instances of partial complementation appear to be intracistronic, suggesting that the birA product forms a multimer active as both biotin holoenzyme synthetase and repressor.DNA segments that include and express the birA gene have been cloned into multicopy plasmids. Plasmid-mediated expression of birA can produce a state of superrepression of the bio operon and a concomitant increase in holoenzyme synthetase specific activity. The complementation properties of derivative plasmids, with insertions of Tn5 or small deletions in the bacterial DNA segment, define a 1.6 × 103 base region that includes the birA gene and a 0.9 × 103 base segment essential to biotin holoenzyme synthetase and repressor function. The region is flanked by the thrT and tufB genes in a previously unassigned region of the bacterial DNA carried by λdrifd18.A preparation of holoenzyme synthetase, purified nearly 10,000-fold, contains a protein that binds specifically to biotin operator DNA as determined by its ability to protect a TaqI endonuclease site that borders the imperfect inverted repeat where the bio repressor is presumed to bind. Biotinyl 5′-adenylate or biotin plus ATP are more effective corepressors than biotin alone, suggesting that biotinyl 5′-adenylate, a presumed intermediate in the holoenzyme synthetase reaction, is the true corepressor.  相似文献   

20.
A Picciocchi  R Douce  C Alban 《Plant physiology》2001,127(3):1224-1233
Biotin synthase, encoded by the bio2 gene in Arabidopsis, catalyzes the final step in the biotin biosynthetic pathway. The development of radiochemical and biological detection methods allowed the first detection and accurate quantification of a plant biotin synthase activity, using protein extracts from bacteria overexpressing the Arabidopsis Bio2 protein. Under optimized conditions, the turnover number of the reaction was >2 h(-1) with this in vitro system. Purified Bio2 protein was not efficient by itself in supporting biotin synthesis. However, heterologous interactions between the plant Bio2 protein and bacterial accessory proteins yielded a functional biotin synthase complex. Biotin synthase in this heterologous system obeyed Michaelis-Menten kinetics with respect to dethiobiotin (K(m) = 30 microM) and exhibited a kinetic cooperativity with respect to S-adenosyl-methionine (Hill coefficient = 1.9; K(0.5) = 39 microM), an obligatory cofactor of the reaction. In vitro inhibition of biotin synthase activity by acidomycin, a structural analog of biotin, showed that biotin synthase reaction was the specific target of this inhibitor of biotin synthesis. It is important that combination experiments using purified Bio2 protein and extracts from pea (Pisum sativum) leaf or potato (Solanum tuberosum) organelles showed that only mitochondrial fractions could elicit biotin formation in the plant-reconstituted system. Our data demonstrated that one or more unidentified factors from mitochondrial matrix (pea and potato) and from mitochondrial membranes (pea), in addition to the Bio2 protein, are obligatory for the conversion of dethiobiotin to biotin, highlighting the importance of mitochondria in plant biotin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号