首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Burke  S Zaager  J Bliss 《Biochemistry》1987,26(5):1492-1496
The stability of myosin subfragment 1 (S1) to thermal denaturation has been followed by limited tryptic proteolysis. Digestions done during the thermal denaturation show that at temperatures at and above 37 degrees C there is a marked increase in the susceptibility of S1 to tryptic degradation, as evidenced by the loss of all bands corresponding to the normally trypsin-resistant fragments of 50, 27, and 21 kDa of the heavy chain and to the light chain. The enhanced digestion of S1 appears to be due to a general unfolding of all segments of S1, although the 50-kDa segment appears to unfold at a lower temperature than the remainder of the S1 structure. Digestions done after 30-min exposure to higher temperatures or after subsequent cooling to 25 degrees C show marked differences in the susceptibility of the S1 to trypsin. This suggests that, on cooling, a substantial portion of the S1, but not the 50-kDa segment, is capable of refolding to a state corresponding closely to that in the native S1. These data indicate that in terms of thermal denaturation the S1 behaves as though it is comprised of two domains--an unstable 50-kDa domain and a more stable domain comprised of the 27- and 21-kDa segments of the heavy chain interacting with the light chain, as proposed recently by Setton and Muhlrad [Setton, A., & Muhlrad, A. (1984) Arch. Biochem. Biophys. 235, 411-417]. The rates of thermal inactivation of the ATPase of S1 are found to correspond closely to the decay rates for the 50-kDa fragment, suggesting that this segment in S1 is closely associated with the ATPase function of the protein.  相似文献   

2.
Structural changes in subfragment 1 of skeletal muscle myosin were investigated by cross-linking trypsin-cleaved S1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. In the absence of nucleotide the alkali light chains are cross-linked to the 27 kDa heavy chain fragment; the presence of MgATP reduces the efficiency of this reaction. On the other hand, MgATP promotes the cross-link formation between the N-terminal 27 kDa and C-terminal 20 kDa fragments of the heavy chain. The chemical cleavage of the cross-linked heavy chains fragments with N-chlorosuccinimide and hydroxylamine indicates that the cross-links are formed between the regions spanning residues 131-204 and 699-809. These results indicate that the two regions of the heavy chain that are relatively distant in nucleotide-free skeletal S1 [Rayment et al. (1993) Science 261, 50-58] can potentially interact upon addition of nucleotide.  相似文献   

3.
The thermal unfolding of myosin subfragment 1 (S1) cleaved by trypsin was studied by differential scanning calorimetry. In the absence of nucleotides, trypsin splits the S1 heavy chain into three fragments (25, 50, and 20 kDa). This cleavage has no appreciable influence on the thermal unfolding of S1 examined in the presence of ADP, in the ternary complexes of S1 with ADP and phosphate analogs, such as orthovanadate (Vi) or beryllium fluoride (BeFx), and in the presence of F-actin. In the presence of ATP and in the complexes S1.ADP.Vi or S1.ADP.BeFx, trypsin produces two additional cleavages in the S1 heavy chain: a faster cleavage in the N-terminal region between Arg23 and Ile24, and a slower cleavage at the 50 kDa fragment. It has been shown that the N-terminal cleavage strongly decreases the thermal stability of S1 by shifting the maximum of its thermal transition by about 7 degrees C to a lower temperature, from 50 degrees C to 42.4 degrees C, whereas the cleavage at both these sites causes dramatic destabilization of the S1 molecule leading to total loss of its thermal transition. Our results show that S1 with ATP-induced N-terminal cleavage is able, like uncleaved S1, to undergo global structural changes in forming the stable ternary complexes with ADP and Pi analogs (Vi, BeFx). These changes are reflected in a pronounced increase of S1 thermal stability. However, S1 cleaved by trypsin in the N-terminal region is unable, unlike S1, to undergo structural changes induced by interaction with F-actin that are expressed in a 4-5 degrees C shift of the S1 thermal transition to higher temperature. Thus, the cleavage between Arg23 and Ile24 does not significantly affect nucleotide-induced structural changes in the S1, but it prevents structural changes that occur when S1 is bound to F-actin. The results suggest that the N-terminal region of the S1 heavy chain plays an important role in structural stabilization of the entire motor domain of the myosin head, and a long-distance communication pathway may exist between this region and the actin-binding sites.  相似文献   

4.
A 26 kDa peptide has been cleaved from the C-terminus of the S1 heavy chain with formic acid. Cleavage occurs in the '50 kDa' domain probably at the Asp-600-Pro-601 bond. This fragment has been renatured in the presence of the A2 light chain and the 26 kDa(A2) complex shown to interact with actin in an ATP-sensitive manner.  相似文献   

5.
It has been previously shown that in the M-MgADP-P(i) state, where the myosin head adopts a pre-power stroke conformation, treatment of trypsin-split subfragment 1 of skeletal muscle myosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) results in cross-linking of the C-terminal fragment of the heavy chain of S1 -- most probably its converter region -- to the N-terminal S1 heavy-chain fragment, generating a product of 44 kDa [Biochim. Biophys. Acta 1481 (2000) 55]. The results described here show that this product is neither generated in the absence of nucleotide nor in the presence of MgADP or MgPP(i). The 44 kDa cross-linking product can be formed when S1 treated with EDC is complexed with MgADP-AlF(4) or MgADP-V(i) (MgADP-P(i) analogs) and with MgADP-BeF(x), MgATP gamma S or MgAMPPNP (MgATP analogs). The results suggest structural differences between MgATP- or MgADP-P(i)-bound S1, and MgADP-bound or nucleotide-free S1, in spatially close regions of their N- and C-terminal heavy-chain fragments.  相似文献   

6.
Guanidine hydrochloride-induced denaturation and thermal denaturation of three kinds of tryptophan synthase alpha subunit have been compared by circular dichroism measurements. The three alpha subunits are from Escherichia coli, Salmonella typhimurium, and an interspecies hybrid in which the C-terminal domain comes from E. coli (alpha-2 domain) and the N-terminal domain comes from S. typhimurium (alpha-1 domain). Analysis of denaturation by guanidine hydrochloride at 25 degrees C showed that the alpha-2 domain of S. typhimurium was more stable than the alpha-2 domain of E. coli, but the alpha-1 domain of S. typhimurium was less stable than the alpha-1 domain of the E. coli protein; overall, the hybrid protein was slightly less stable than the two original proteins. It is concluded that the stability to guanidine hydrochloride denaturation of each of the domains of the interspecies hybrid is similar to the stability of the domain of the species from which it originated. The E. coli protein was more stable to thermal denaturation than the other proteins near the denaturation temperature, but the order of their thermal stability was reversed at 25 degrees C and coincided with that obtained from guanidine hydrochloride-induced denaturation.  相似文献   

7.
Myosin subfragment-1 (S1), which has one heavy chain (HC) (93 kDa) and two light chains (LC1 and LC2), was prepared by papain digestion of myosin from abalone-smooth muscle in the presence of Ca2+. The Ca-sensitivity of abalone S1 itself was not lost completely (about 30%). The tryptic digestion of S1 showed that in the presence of EDTA, S1 HC was split into 68, 55, and 23 kDa fragments, as in the presence of Ca2+, but 23 kDa was further degraded into 19 kDa. In contrast to the result in the presence of Ca2+, LCs disappeared in the early stage of reaction and Ca-ATPase activity decreased rapidly to about 70% of that of intact S1. This rapid decrease of Ca-ATPase activity seemed to be accompanied with the digestion of LCs. Therefore, LCs contribute to the protection of 23 kDa fragment from further digestion, to the maintenance of Ca-ATPase activity by stabilizing the structure of S1 to some extent in the presence of Ca2+. Since F-actin suppressed the cleavage of S1 HC to 68 and 23 kDa during tryptic digestion, it might be that 23 and 68 kDa corresponded to 20 kDa (C-terminal fragment) and to 50 + 25 kDa (N-terminal fragment) of skeletal myosin S1, respectively.  相似文献   

8.
The betagamma-crystallin superfamily consists of a class of homologous two-domain proteins with Greek-key fold. Protein S, a Ca(2+)-binding spore-coat protein from the soil bacterium Myxococcus xanthus exhibits a high degree of sequential and structural homology with gammaB-crystallin from the vertebrate eye lens. In contrast to gammaB-crystallin, which undergoes irreversible aggregation upon thermal unfolding, protein S folds reversibly and may therefore serve as a model in the investigation of the thermodynamic stability of the eye-lens crystallins. The thermal denaturation of recombinant protein S (PS) and its isolated domains was studied by differential scanning calorimetry in the absence and in the presence of Ca(2+) at varying pH. Ca(2+)-binding leads to a stabilization of PS and its domains and increases the cooperativity of their equilibrium unfolding transitions. The isolated N-terminal and C-terminal domains (NPS and CPS) obey the two-state model, independent of the pH and Ca(2+)-binding; in the case of PS, under all conditions, an equilibrium intermediate is populated. The first transition of PS may be assigned to the denaturation of the C-terminal domain and the loss of domain interactions, whereas the second one coincides with the denaturation of the isolated N-terminal domain. At pH 7.0, in the presence of Ca(2+), where PS exhibits maximal stability, the domain interactions at 20 degrees C contribute 20 kJ/mol to the overall stability of the intact protein.  相似文献   

9.
Guanidine hydrochloride-induced denaturation and thermal denaturation of three kinds of tryptophan synthase α subunit have been compared by circular dichroism measurements. The three α subunits are from Escherichia coli, Salmonella typhimurium, and an interspecies hybrid in which the C-terminal domain comes from E. coli (α-2 domain) and the N-terminal domain comes from S. typhimurium (α-1 domain). Analysis of denaturation by guanidine hydrochloride at 25 °C showed that the α-2 domain of S. typhimurium was more stable than the α-2 domain of E. coli, but the α-1 domain of S. typhimurium was less stable than the α-1 domain of the E. coli protein; overall, the hybrid protein was slightly less stable than the two original proteins. It is concluded that the stability to guanidine hydrochloride denaturation of each of the domains of the interspecies hybrid is similar to the stability of the domain of the species from which it originated. The E. coli protein was more stable to thermal denaturation than the other proteins near the denaturation temperature, but the order of their thermal stability was reversed at 25 °C and coincided with that obtained from guanidine hydrochloride-induced denaturation.  相似文献   

10.
Wagner W  Fodor E  Ginsburg A  Hammer JA 《Biochemistry》2006,45(38):11564-11577
The myosin Va light chain DYNLL2 has been proposed to function as an adaptor to link the myosin to certain cargo. Here, we mapped the binding site for DYNLL2 within the myosin Va heavy chain. Copurification and pull-down experiments showed that the heavy chain contains a single DYNLL2 binding site and that this site resides within a discontinuity in the myosin's central coiled-coil domain. Importantly, exon B, an alternatively spliced, three-amino acid exon, is a part of this binding site, and we show in the context of full-length myosin Va that this exon is required for DYNLL2-myosin Va interaction. We investigated the effect of DYNLL2 binding on the structure of a myosin Va heavy chain fragment that contains the DYNLL2 binding site and flanking sequence, only parts of which are strongly predicted to form a coiled coil. Circular dichroism measurements revealed a DYNLL2-induced change in the secondary structure of this dimeric myosin fragment that is consistent with an increase in alpha-helical coiled-coil content. Moreover, the binding of DYNLL2 considerably stabilizes this heavy chain fragment against thermal denaturation. Analytical ultracentrifugation yielded an apparent association constant of approximately 3 x 10(6) M(-1) for the interaction of DYNLL2 with the dimeric myosin fragment. Together, these data show that alternative splicing of the myosin Va heavy chain controls DYNLL2-myosin Va interaction and that DYNLL2 binding alters the structure of a portion of the myosin's coiled-coil domain. These results suggest that exon B could have a significant impact on the conformation and regulatory folding of native myosin Va, as well as on its interaction with certain cargos.  相似文献   

11.
The existence of the two connector segments linking the tryptic 50 kDa fragment of skeletal S1 heavy chain to the adjacent 27 kDa and 20 kDa peptides was ascertained by digestion of S1 with staphylococcal protease which was found to act specifically at these particular regions. Three new peptides of Mr 28000, 48000 and 22000 were produced and the novel S1 derivative formed had an intact actin-activated ATPase activity. Amino acid sequence analyses indicated that the 48 kDa and 22 kDa peptides overlap the two connector elements.  相似文献   

12.
Heat denaturation of Cry3A delta-endotoxin from Bacillus thuringiensis var. tenebrionis and its 55 kDa fragment was studied by differential scanning microcalorimetry at low pH. Analysis of the calorimetric data has shown that denaturation of Cry3A delta-endotoxin is a nonequilibrium process at heating rates from 0. 125 to 2 K/min. This means that the stability of delta-endotoxin (the apparent temperature of denaturation Tm) under these conditions is under kinetic control rather than under thermodynamic control. It has been shown that heat denaturation of this protein is a one-step kinetic process. The enthalpy of the process and its activation energy were measured as functions of temperature. The data obtained allow confirmation of the fact that the conformation of delta-endotoxin at the transition state only slightly differs from its native conformation with respect to compactness and extent of hydration. The comparison of the activation energy for intact delta-endotoxin and the 55 kDa fragment showed that the transition of the molecule to a transition state does not cause any changes in the conformation of three N-terminal alpha-helices. Complete removal of the N-terminal domain of delta-endotoxin and 40 amino acids from the C-terminus beta-sheet domain III causes an irreversible loss of the tertiary structure. Thus, during protein folding the nucleation core determining protein stability does not involve its three initial alpha-helices but may include the remaining alpha-helices of the N-terminal domain. The functional significance of peculiarities of structure arrangement of the delta-endotoxin molecule is discussed.  相似文献   

13.
The alkali light chain of rabbit skeletal muscle myosin, A1, was cyanylated with 2-nitro-5-thiocyanobenzoic acid, and the peptide bond at Cys 177 was subsequently cleaved in the presence of 0.05 M CaCl2. Two peptide fragments, from the N-terminal to the residue 176 (CF1) and from the residue 177 to the C-terminal (CF2), were obtained. The CD spectrum and the difference UV absorption spectrum induced by CaCl2 suggested that CF1 largely retained the higher order structure of A1. The CF1 fragment, however, could neither incorporate subfragment-1 (S-1) by an exchange reaction, nor bind with the renatured 20K fragment of S-1 heavy chain. On the other hand, the C-terminal fragment of 14 residues, CF2, could bind with the 20K fragment of S-1 heavy chain. These results indicate that the binding site of the alkali light chain for the heavy chain of myosin is located within the C-terminal 14 residues.  相似文献   

14.
To probe the effect of nucleotide on the formation of ionic contacts between actin and the 567-578 residue loop of the heavy chain of rabbit skeletal muscle myosin subfragment 1 (S1), the complexes between F-actin and proteolytic derivatives of S1 were submitted to chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. We have shown that in the absence of nucleotide both 45 kDa and 5 kDa tryptic derivatives of the central 50 kDa heavy chain fragment of S1 can be cross-linked to actin, whereas in the presence of MgADP.AlF4, only the 5 kDa fragment is involved in cross-linking reaction. By the identification of the N-terminal sequence of the 5-kDa fragment, we have found that trypsin splits the 50 kDa heavy chain fragment between Lys-572 and Gly-573, the residues located within the 567-578 loop. Using S1 preparations cleaved with elastase, we could show that the residue of 567-578 loop that can be cross-linked to actin in the presence of MgADP.AlF4 is Lys-574. The observed nucleotide-dependent changes of the actin-subfragment 1 interface indicate that the 567-578 residue loop of skeletal muscle myosin participates in the communication between the nucleotide and actin binding sites.  相似文献   

15.
Recently, by treating the head portion of skeletal myosin subfragment-1 (S1) with the bifunctional agent dibromobimane, we introduced an intramolecular covalent cross-link which resulted in the stabilisation of an internal loop in the heavy chain structure of the head [Mornet et al. (1984) Proc. Natl Acad. Sci. USA 82, 1658-1662]. In order to define the functional properties of this new S1 conformational state, we have first determined the experimental conditions for the optimum modification of S1 by dibromobimane. We finally settled on a 60% yield of cross-linked S1. Because the modification occurs between the 50-kDa and the 20-kDa tryptic heavy chain fragments which have been postulated to be involved in the interaction of native S1 with actin, we have investigated the association of dibromobimane-treated S1 with actin, using chemical cross-linking of their rigor complex with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linked species obtained were analyzed by polyacrylamide gel electrophoresis and compared with those known for unmodified S1. The carbodiimide-catalyzed linkage between actin and dibromobimane-modified S1 led to a singlet protein band migrating with an apparent molecular mass of 155 kDa, in contrast to the usual doublet bands of 175 kDa and 185 kDa produced with native S1. This result suggests that a change has occurred at the actin interface on the dibromobimane-treated S1 heavy chain. The covalent complex generated by carbodiimide cross-linking between actin and dibromobimane-modified S1 (27-kDa + 50-kDa + 20-kDa fragments) was submitted to chemical hydrolysis with hydroxylamine. The nature of the products identified is consistent with the conclusion that the internal freezing of the heavy chain structure by dibromobimane induces the loss of the ability to cross-linkage of the actin site on the 20-kDa domain but does not affect the conformation of the second site on the 50-kDa segment, which becomes the unique actin region cross-linkable by actin.  相似文献   

16.
Elevated levels of the calcium-binding regulatory protein, S100A4, have been shown to be causative of a metastatic phenotype in models of cancer metastasis and to be associated with reduced patient survival in breast cancer patients. Recombinant S100A4 protein interacts in vitro in a calcium-dependent manner with the heavy chain of non-muscle myosin isoform A at a protein kinase C phosphorylation site. At present, the mechanism of metastasis induction by S100A4 in vivo is almost completely unknown. The binding of S100A4 to a C-terminal recombinant fragment of non-muscle myosin heavy chain in living HeLa cells has now been shown using confocal microscopy, fluorescence lifetime imaging microscopy and time-correlated single-photon counting. The association between S100A4 and non-muscle myosin heavy chain was studied by determining fluorescence resonance energy transfer-derived changes in the fluorescence lifetime of enhanced cyan fluorescent protein fused to S100A4 in the presence of a recombinant fragment of the C-terminal region of non-muscle myosin heavy chain (rNMMHCIIA) fused to enhanced yellow fluorescent protein. There was no interaction between the non-muscle myosin heavy chain fragment and a calcium-binding-deficient mutant of S100A4 protein which has been shown to be defective in the induction of metastasis in model systems in vivo. The results demonstrate, for the first time, not only direct interaction between S100A4 and a target rNMMHCIIA in live mammalian cells, but also that the interaction between S100A4 and the non-muscle myosin heavy chain in vivo could contribute to the mechanism of metastasis induction by a high level of S100A4 protein.  相似文献   

17.
A Kumar  S H Wilson 《Biochemistry》1990,29(48):10717-10722
A1 is a major core protein of the mammalian hnRNP complex, and as a purified protein of approximately 34 kDa, A1 is a strong single-stranded nucleic acid binding protein. Several lines of evidence suggest that the protein is organized in discrete domains consisting of an N-terminal segment of approximately 22 kDa and a C-terminal segment of approximately 12 kDa. Each of these domains as a purified fragment is capable of binding to both ssDNA and RNA. We report here that A1 and its C-terminal domain fragment are capable of potent strand-annealing activity for base-pair complementary single-stranded polynucleotides of both RNA and DNA. This effect is not stimulated by ATP. Compared with A1 and the C-terminal fragment, the N-terminal domain fragment has negligible annealing activity. These results indicate that A1 has biochemical activity consistent with a strand-annealing role in relevant reactions, such as pre-mRNA splicing.  相似文献   

18.
The antigenic domain of the major surface protein (Nc-p43) of Neospora caninum was examined by polymerase chain reaction of its gene fragments and recombinant expression as GST fusion proteins. The fragments of Nc-p43 were as follow: a total open reading frame (OFR), T; OFR without signal sequence and C-terminal hydrophobic sequence, S; N-terminal 2/3 parts of S, A; C-terminal 2/3 parts, P; N-terminal 1/3 part, X; middle 1/3 part, Y; and C-terminal 1/3 part, Z, respectively. The DNA fragments were cloned into pGEX-4T vector. Recombinant plasmids transformed into Escherichia coli of BL21 pLysS (DE3) strain were induced to express GST or GST fused fragments of Nc-p43 such as 69 kDa protein for T, 66 kDa for S, 52 kDa for A, 53 kDa for P, and 40 kDa proteins for X, Y, and Z, respectively in SDS-PAGE. The Nc-p43 fragments of T, S, and P reacted with a bovine serum of neosporosis while those of A, X, Y, and Z together with GST did not in the western blot. These findings suggest that the antigenic domain of Nc-p43 of N. caninum may be localized in the C-terminal 2/3 parts. Together with A19 clone in SAG1 of Toxoplasma gondii (Nam et al., 1996), the P fragment of Nc-p43 could be used as efficient antigens to diagnose and differentiate those infections with both species.  相似文献   

19.
The N-terminal domain of the ribosomal protein L9 forms a split betaalphabeta structure with a long C-terminal helix. The folding transitions of a 56 residue version of this protein have previously been characterized, here we report the results of a study of a truncation mutant corresponding to residues 1-51. The 51 residue protein adopts the same fold as the 56 residue protein as judged by CD and two-dimensional NMR, but it is less stable as judged by chemical and thermal denaturation experiments. Studies with synthetic peptides demonstrate that the C-terminal helix of the 51 residue version has very little propensity to fold in isolation in contrast to the C-terminal helix of the 56 residue variant. The folding rates of the two proteins, as measured by stopped-flow fluorescence, are essentially identical, indicating that formation of local structure in the C-terminal helix is not involved in the rate-limiting step of folding.  相似文献   

20.
Chen M  Stafford WF  Diedrich G  Khan A  Bouvier M 《Biochemistry》2002,41(49):14539-14545
Tapasin is a type I membrane glycoprotein involved with other accessory proteins in the assembly of class I MHC-beta(2)m-peptide complexes in the endoplasmic reticulum. We have probed the three-dimensional structure of the lumenal region of human tapasin (residues 1-392) tagged with a (His)(6) sequence at its C-terminus using biochemical and biophysical techniques. The far-UV circular dichroism spectrum revealed that tapasin possesses well-defined secondary structural elements corresponding predominantly to beta-sheets. A thermal denaturation curve recorded at 216 nm showed a midpoint transition centered at approximately 45 degrees C. Sedimentation analysis showed that tapasin is monomeric in solution with a sedimentation coefficient, S degrees (20,w), of 2.68 S. This value of S degrees (20,w) combined with the value of the molar mass obtained by MALDI mass spectrometry (44.2 kDa) yielded a frictional ratio, f/f(0), of 1.47. Assuming tapasin is a prolate ellipsoid, we calculated an apparent length of 22.5 nm and a diameter of 2.62 nm, consistent with an elongated molecular shape. Controlled proteolysis using various enzymes revealed that a narrow region of tapasin near residue 90 is highly susceptible to digestion, resulting in two fragments that are resistant to further cleavage. The identity of these fragments was determined by amino acid sequencing and MALDI mass spectrometry and revealed a 9 kDa N-terminal fragment and a 34 kDa C-terminal fragment. Collectively, these results suggest that tapasin is comprised of two core domains of different sizes loosely linked by a flexible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号