首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We showed previously that activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, demonstrating the importance of Raf-independent pathways in mediating Ras transformation. To assess the mechanism by which Raf-independent effector signaling pathways contribute to Ras-mediated transformation, we recently utilized representational difference analysis to identify genes expressed in a deregulated fashion by activated Ras but not Raf. One gene identified in these analyses encodes for alpha-tropomyosin. Therefore, we evaluated the mechanism by which Ras causes the downregulation of tropomyosin expression. By using RIE-1 cells that harbor inducible expression of activated H-Ras(12V), we determined that the downregulation of tropomyosin expression correlated with the onset of morphological transformation. We found that the reversal of Ras transformation caused by inhibition of extracellular signal-regulated kinase activation corresponded to a restoration of tropomyosin expression. Inhibition of p38 activity in Raf-expressing RIE-1 cells caused both morphological transformation and loss of tropomyosin expression. Thus, a reduction in tropomyosin expression correlated strictly with morphological transformation of RIE-1 cells. However, forced overexpression of tropomyosin in Ras-transformed cells did not reverse morphological or growth transformation, a finding consistent with the possibility that multiple changes in gene expression contribute to Ras transformation. We also determined that tropomyosin expression was low in two human tumor cell lines, DLD-1 and HT1080, that harbor endogenous mutated alleles of ras, but high in transformation-impaired, derivative cell lines in which the mutant ras allele has been genetically deleted. Finally, treatment with azadeoxycytidine restored tropomyosin expression in Ras-transformed RIE-1, HT1080, and DLD-1 cells, suggesting a role for DNA methylation in downregulating tropomyosin expression.  相似文献   

2.
Activated Ras, but not Raf, causes transformation of RIE-1 rat intestinal epithelial cells, demonstrating the importance of Raf-independent effector signaling in mediating Ras transformation. To further assess the contribution of Raf-dependent and Raf-independent function in oncogenic Ras transformation, we evaluated the mechanism by which oncogenic Ras blocks suspension-induced apoptosis, or anoikis, of RIE-1 cells. We determined that oncogenic versions of H-, K-, and N-Ras, as well as the Ras-related proteins TC21 and R-Ras, protected RIE-1 cells from anoikis. Surprisingly, our analyses of Ras effector domain mutants or constitutively activated effectors indicated that activation of Raf-1, phosphatidylinositol 3-kinase (PI3K), or RalGDS alone is not sufficient to promote Ras inhibition of anoikis. Treatment of Ras-transformed cells with the U0126 MEK inhibitor caused partial reversion to an anoikis-sensitive state, indicating that extracellular signal-regulated kinase activation contributes to inhibition of anoikis. Unexpectedly, oncogenic Ras failed to activate Akt, and treatment of Ras-transformed RIE-1 cells with the LY294002 PI3K inhibitor did not affect anoikis resistance or growth in soft agar. Thus, while important for Ras transformation of fibroblasts, PI3K may not be involved in Ras transformation of RIE-1 cells. Finally, inhibition of epidermal growth factor receptor kinase activity did not overcome Ras inhibition of anoikis, indicating that this autocrine loop essential for transformation is not involved in anoikis protection. We conclude that a PI3K- and RalGEF-independent Ras effector(s) likely cooperates with Raf to confer anoikis resistance upon RIE-1 cells, thus underscoring the complex nature by which Ras transforms cells.  相似文献   

3.
4.
Activated Ras but not Raf can transform RIE-1 and other epithelial cells, indicating the critical importance of Raf-independent effector function in Ras transformation of epithelial cells. To elucidate the nature of these Raf-independent activities, we utilized representational difference analysis to identify genes aberrantly expressed by Ras through Raf-independent mechanisms in RIE-1 cells. We identified a total of 22 genes, both known and novel, whose expression was either activated or abolished by Ras but not Raf. The genes up-regulated encode proteins involved in protein or DNA synthesis, regulation of protease activity, or ligand binding, whereas those genes down-regulated encode actin cytoskeletal-, extracellular matrix-, and gap junction-associated proteins, and transmembrane receptor- or cytokine-like proteins. These results suggest that a key function of Raf-independent signaling involves deregulation of gene expression. We further characterized transgelin as a gene whose expression was abolished by Ras. Transgelin was identified previously as a protein whose expression was lost in virally transformed cell lines. We show that this loss is regulated at the level of gene expression and that both Raf-dependent and Raf-independent pathways are required to cause Ras down-regulation of transgelin in RIE-1 cells, whereas Raf alone is sufficient to cause its loss in NIH 3T3 fibroblasts. We also found that Ras-dependent and Ras-independent mechanisms can cause the down-regulation of transgelin in human breast and colon carcinoma cells lines and patient-derived tumor samples. We conclude that loss of transgelin gene expression may be an important early event in tumor progression and a diagnostic marker for breast and colon cancer development.  相似文献   

5.
6.
MAPKs are crucially involved in the regulation of growth and differentiation of a variety of cells. To elucidate the role of MAPKs in keratinocyte differentiation, activation of ERK, JNK, and p38 in response to stimulation with extracellular calcium was analyzed. We provide evidence that calcium-induced differentiation of keratinocytes is associated with rapid and transient activation of the Raf/MEK/ERK pathway. Stimulation of keratinocytes with extracellular calcium resulted in activation of Raf isozymes and their downstream effector ERK within 10-15 min, but did not increase JNK or p38 activity. Calcium-induced ERK activation differed in kinetics from mitogenic ERK activation by epidermal growth factor and could be modulated by alterations of intracellular calcium levels. Interestingly, calcium stimulation led to down-regulation of Ras activity at the same time that ERK activation was initiated. Expression of a dominant-negative mutant of Ras also did not significantly impair calcium-induced ERK activation, indicating that calcium-mediated ERK activation does not require active Ras. Despite the transient nature of ERK activation, calcium-induced expression of the cyclin-dependent kinase inhibitor p21/Cip1 and the differentiation marker involucrin was sensitive to MEK inhibition, which suggests a role for the Raf/MEK/ERK pathway in early stages of keratinocyte differentiation.  相似文献   

7.
8.
Among the mechanisms by which the Ras oncogene induces cellular transformation, Ras activates the mitogen-activated protein kinase (MAPK or ERK) cascade and a related cascade leading to activation of Jun kinase (JNK or SAPK). JNK is additionally regulated by the Ras-related G proteins Rac and Cdc42. Ras also regulates the actin cytoskeleton through an incompletely elucidated Rac-dependent mechanism. A candidate for the physiological effector for both JNK and actin regulation by Rac and Cdc42 is the serine/threonine kinase Pak (p65pak). We show here that expression of a catalytically inactive mutant Pak, Pak1(R299), inhibits Ras transformation of Rat-1 fibroblasts but not of NIH 3T3 cells. Typically, 90 to 95% fewer transformed colonies were observed in cotransfection assays with Rat-1 cells. Pak1(R299) did not inhibit transformation by the Raf oncogene, indicating that inhibition was specific for Ras. Furthermore, Rat-1 cell lines expressing Pak1(R299) were highly resistant to Ras transformation, while cells expressing wild-type Pak1 were efficiently transformed by Ras. Pak1(L83,L86,R299), a mutant that fails to bind either Rac or Cdc42, also inhibited Ras transformation. Rac and Ras activation of JNK was inhibited by Pak1(R299) but not by Pak1(L83,L86,R299). Ras activation of ERK was inhibited by both Pak1(R299) and Pak1(L83,L86,R299), while neither mutant inhibited Raf activation of ERK. These results suggest that Pak1 interacts with components essential for Ras transformation and that inhibition can be uncoupled from JNK but not ERK signaling.  相似文献   

9.
Although unregulated activation of the Ras/Raf/mitogen-activated protein kinase kinase/Erk signaling pathway is believed to be a central mechanism by which many cell types undergo oncogenic transformation, recent studies indicate that activation of Raf kinase by oncogenic Ras is not sufficient to cause tumorigenic transformation in intestinal epithelial cells. Thus, identification of signaling proteins and pathways that interact with Raf to transform intestinal epithelial cells may be critical for understanding aberrant growth control in the intestinal epithelium. Functional interactions between Raf and the small GTPase RhoA were studied in RIE-1 cells overexpressing both activated Raf(22W) and activated RhoA(63L). Double transfectants were morphologically transformed, formed colonies in soft agar, grew in nude mice, overexpressed cyclin D1 and cyclooxygenase-2 (COX-2), and were resistant to growth inhibition by transforming growth factor (TGF) beta. RIE-Raf and RIE-RhoA single transfectants showed none of these characteristics. Expression of a dominant-negative RhoA(N19) construct in RIE-Ras(12V) cells was associated with markedly reduced COX-2 mRNA, COX-2 protein, and prostaglandin E2 levels when compared with RIE-Ras(12V) cells transfected with vector alone. However, no change in transformed morphology, growth in soft agar, cyclin D1 expression, TGFalpha expression, or TGFbeta sensitivity was observed. In summary, coexpression of activated Raf and RhoA induces transformation and TGFbeta resistance in intestinal epithelial cells. Although blockade of RhoA signaling reverses certain well-described characteristics of RIE-Ras cells, it is insufficient to reverse the transformed phenotype and restore TGFbeta sensitivity. Blockade of additional Rho family members or alternate Ras effector pathways may be necessary to fully reverse the Ras phenotype.  相似文献   

10.
Glutamine, the most abundant amino acid in the bloodstream, is the preferred fuel source for enterocytes and plays a vital role in the maintenance of mucosal growth. The molecular mechanisms regulating the effects of glutamine on intestinal cell growth and survival are poorly understood. Here, we show that addition of glutamine (1 mmol/l) enhanced rat intestinal epithelial (RIE)-1 cell growth; conversely, glutamine deprivation increased apoptosis as noted by increased DNA fragmentation and caspase-3 activity. To delineate signaling pathways involved in the effects of glutamine on intestinal cells, we assessed activation of extracellular signal-related kinase (ERK), protein kinase D (PKD), and phosphatidylinositol 3-kinase (PI3K)/Akt, which are important pathways in cell growth and survival. Addition of glutamine activated ERK and PKD in RIE-1 cells after a period of glutamine starvation; inhibition of ERK, but not PKD, increased cell apoptosis. Conversely, glutamine starvation alone increased phosphorylated Akt; inhibition of Akt enhanced RIE-1 cell DNA fragmentation. The role of ERK was further delineated using RIE-1 cells stably transfected with an inducible Ras. Apoptosis was significantly increased following ERK inhibition, despite Ras activation. Taken together, these results identify a critical role for the ERK signaling pathways in glutamine-mediated intestinal homeostasis. Furthermore, activation of PI3K/Akt during periods of glutamine deprivation likely occurs as a protective mechanism to limit apoptosis associated with cellular stress. Importantly, our findings provide novel mechanistic insights into the antiapoptotic effects of glutamine in the intestine.  相似文献   

11.
12.
Recent studies have provided evidence that Zn2+ plays a crucial role in ischemia- and seizure-induced neuronal death. However, the intracellular signaling pathways involved in Zn2+-induced cell death are largely unknown. In the present study, we investigated the roles of mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK), and of reactive oxygen species (ROS) in Zn2+-induced cell death using differentiated PC12 cells. Intracellular accumulation of Zn2+ induced by the combined application of pyrithione (5 microM), a Zn2+ ionophore, and Zn2+ (10 microM) caused cell death and activated JNK and ERK, but not p38 MAPK. Preventing JNK activation by the expression of dominant negative SEK1 (SEKAL) did not attenuate Zn2+-induced cell death, whereas the inhibition of ERK with PD98059 and the expression of dominant negative Ras mutant (RasN17) significantly prevented cell death. Inhibition of protein kinase C (PKC) and phosphatidylinositol-3 kinase had little effect on Zn2+-induced ERK activation. Intracellular Zn2+ accumulation resulted in the generation of ROS, and antioxidants prevented both the ERK activation and the cell death induced by Zn2+. Therefore, we conclude that although Zn2+ activates JNK and ERK, only ERK contributes to Zn2+-induced cell death, and that ERK activation is mediated by ROS via the Ras/Raf/MEK/ERK signaling pathway.  相似文献   

13.
A novel branch of the Ras family, Rit, was recently identified. Rit exhibits a distinct C-terminus and effector domain, and does not activate mitogen-activated protein kinase (MAPK) but can cooperate with Raf to transform fibroblasts. Here, we found that when overexpressed, activated mutants of Rit transform NIH 3T3 cells efficiently, and stimulate p38gamma but not MAPK, p38alpha, p38gamma, p38delta, or ERK5. Furthermore, we provide evidence that p38gamma activation is required for the ability of Rit to stimulate gene expression and cellular transformation. These findings suggest that this unique GTPase stimulates proliferative pathways distinct from those regulated by other Ras family members.  相似文献   

14.
15.
Oridonin was reported to induce L929 cell apoptosis via ROS-mediated mitochondrial and ERK pathways; however, the precise mechanisms by which oridonin induces cell death remain unclear. Herein, we found that oridonin treatment induced an increase in G2/M phase cell percentage. And, G2/M phase arrest was associated with down-regulation of cell cycle related cdc2, cdc25c and cyclinB levels, as well as up-regulation of p21 and p-cdc2 levels. In addition, we discovered that interruption of p53 activation decreased oridonin-induced apoptosis, and blocking ERK by specific inhibitors or siRNA suppressed oridonin-induced p53 activation. Moreover, inhibition of PTK, protein kinase C, Ras, Raf or JNK activation increased oridonin-induced apoptosis. Also, the level of Ras, Raf or JNK was down-regulated by oridonin, and the inhibition of PTK, Ras, Raf activation decreased p-JNK level. In conclusion, oridonin induces L929 cell G2/M arrest and apoptosis, which is regulated by promoting ERK-p53 apoptotic pathway and suppressing PTK-mediated survival pathway.  相似文献   

16.
Ras plays a key role in regulating cellular proliferation, differentiation, and transformation. Raf is the major effector of Ras in the Ras > Raf > Mek > extracellular signal-activated kinase (ERK) cascade. A second effector is phosphoinositide 3-OH kinase (PI 3-kinase), which, in turn, activates the small G protein Rac. Rac also has multiple effectors, one of which is the serine threonine kinase Pak (p65(Pak)). Here we show that Ras, but not Raf, activates Pak1 in cotransfection assays of Rat-1 cells but not NIH 3T3 cells. We tested agents that activate or block specific components downstream of Ras and demonstrate a Ras > PI 3-kinase > Rac/Cdc42 > Pak signal. Although these studies suggest that the signal from Ras through PI 3-kinase is sufficient to activate Pak, additional studies suggested that other effectors contribute to Pak activation. RasV12S35 and RasV12G37, two effector mutant proteins which fail to activate PI 3-kinase, did not activate Pak when tested alone but activated Pak when they were cotransfected. Similarly, RacV12H40, an effector mutant that does not bind Pak, and Rho both cooperated with Raf to activate Pak. A dominant negative Rho mutant also inhibited Ras activation of Pak. All combinations of Rac/Raf and Ras/Raf and Rho/Raf effector mutants that transform cells cooperatively stimulated ERK. Cooperation was Pak dependent, since all combinations were inhibited by kinase-deficient Pak mutants in both transformation assays and ERK activation assays. These data suggest that other Ras effectors can collaborate with PI 3-kinase and with each other to activate Pak. Furthermore, the strong correlation between Pak activation and cooperative transformation suggests that Pak activation is necessary, although not sufficient, for cooperative transformation of Rat-1 fibroblasts by Ras, Rac, and Rho.  相似文献   

17.
TC21 causes transformation by Raf-independent signaling pathways.   总被引:2,自引:1,他引:1       下载免费PDF全文
Although the Ras-related protein TC21/R-Ras2 has only 55% amino acid identity with Ras proteins, mutated forms of TC21 exhibit the same potent transforming activity as constitutively activated forms of Ras. Therefore, like Ras, TC21 may activate signaling pathways that control normal cell growth and differentiation. To address this possibility, we determined if regulators and effectors of Ras are also important for controlling TC21 activity. First, we determined that Ras guanine nucleotide exchange factors (SOS1 and RasGRF/CDC25) synergistically enhanced wild-type TC21 activity in vivo and that Ras GTPase-activating proteins (GAPs; p120-GAP and NF1-GAP) stimulated wild-type TC21 GTP hydrolysis in vitro. Thus, extracellular signals that activate Ras via SOS1 activation may cause coordinate activation of Ras and TC21. Second, we determined if Raf kinases were effectors for TC21 transformation. Unexpectedly, yeast two-hybrid binding analyses showed that although both Ras and TC21 could interact with the isolated Ras-binding domain of Raf-1, only Ras interacted with full-length Raf-1, A-Raf, or B-Raf. Consistent with this observation, we found that Ras- but not TC21-transformed NIH 3T3 cells possessed constitutively elevated Raf-1 and B-Raf kinase activity. Thus, Raf kinases are effectors for Ras, but not TC21, signaling and transformation. We conclude that common upstream signals cause activation of Ras and TC21, but activated TC21 controls cell growth via distinct Raf-independent downstream signaling pathways.  相似文献   

18.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号