首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The species Fusarium verticillioides (= F. moniliforme) is often found in maize seeds, constituting an important source of inoculum in the field. Fusarium spp., associated with symptomatic and asymptomatic plants, may be a primary causal agent of disease, a secondary invader or an endophyte. In the present work, endophytic fungi were isolated from two populations of Zea mays (BR-105 and BR-106) and their respective inbred lines. Within different inbred lines of maize, Fusarium was found at a frequency of 0 to 100% relative to the number of total isolated fungi. The frequency with which the genus occurred was practically the same in the two field sites (around 60%). Twenty-one F. verticillioides strains were analysed using the random amplified polymorphic DNA (RAPD) technique, employing 10 random primers. Variability analysis of endophytic isolates via RAPD showed genome polymorphism taxa of species around 60%. Endophytic isolates were clustered by their sites of origin. RAPD analysis clustered the endophytic isolates by their maize inbred lines hosts (Mil-01 to Mil-06), whereas at site A they clustered into two major groups related to the maize gene pool (BR-105 or BR-106 population). All strains isolated from seeds collected in Site A, except strains L9 and L10, were sub-grouped according to maize inbred lines. The analysis showed a discrete sub-grouping at site B. Results obtained here could be explained by a co-evolution process involving endophytic isolates of F. verticillioides and maize inbred lines.  相似文献   

2.
Pathogenesis-related (PR) proteins are plant proteins that are induced in response to pathogen attack. PR proteins are grouped into independent families based on their sequences and properties. The PR-4 family comprises class I and class II chitinases. We have isolated a full-length cDNA encoding a chitinase from maize which shares a high degree of nucleotide and amino acid sequence homology with the class II chitinases of the PR-4 family of PR proteins. Our results indicate that fungal infection, and treatment either with fungal elicitors or with moniliformin, a mycotoxin produced by the fungus Fusarium moniliforme, increase the level of ZmPR4 mRNA. In situ mRNA hybridization analysis in sections obtained from fungus-infected germinating embryos revealed that ZmPR4 mRNA accumulation occurs in those cell types that first establish contact with the pathogen. ZmPR4 mRNA accumulation is also stimulated by treatment with silver nitrate whereas the application of the hormones gibberellic acid or acetylsalicylic acid has no effect. Wounding, or treatment with abscisic acid or methyl jasmonate, results in accumulation of ZmPR4 mRNA in maize leaves. Furthermore, the ZmPR4 protein was expressed in Escherichia coli, purified and used to obtain polyclonal antibodies that specifically recognized ZmPR4 in protein extracts from fungus-infected embryos. Accumulation of ZmPR4 mRNA in fungus-infected maize tissues was accompanied by a significant accumulation of the corresponding protein. The possible implications of these findings as part of the general defence response of maize plants against pathogens are discussed.  相似文献   

3.
4.
5.
6.
The phytopathogenic fungus Gibberella fujikuroi mating population A (anamorph, Fusarium moniliforme) produces fumonisins, which are toxic to a wide range of plant and animal species. Previous studies of field strains have identified a genetic locus, designated fum1, that can determine whether fumonisins are produced. To test the relationship between fumonisin production and virulence on maize seedlings, a cross between a fum1+ field strain that had a high degree of virulence and a fum1- field strain that had a low degree of virulence was made, and ascospore progeny were scored for these traits. Although a range of virulence levels was recovered among the progeny, high levels of virulence were associated with production of fumonisins, and highly virulent, fumonisin-nonproducing progeny were not obtained. A survey of field strains did identify a rare fumonisin-nonproducing strain that was quite high in virulence. Also, the addition of purified fumonisin B1 to virulence assays did not replicate all of the seedling blight symptoms obtained with autoclaved culture material containing fumonisin. These results support the hypothesis that fumonisin plays a role in virulence but also indicate that fumonisin production is not necessary or sufficient for virulence on maize seedlings.  相似文献   

7.
The major auxin-binding protein from maize coleoptiles was purified to homogeneity. The protein has an apparent mol. wt of 22 kd and binds 1-naphthylacetic acid with a KD of 2.40 x 10(-7) M. Additional antigenically related proteins, present in very low amounts, could be demonstrated in maize coleoptiles using immunodetection. Extensive protein sequence analysis of the major auxin-binding protein allowed the construction of several synthetic oligonucleotide probes which were used to isolate a cDNA coding for this protein. The cDNA corresponds to a mRNA with a 3'-poly(A)+ sequence and a single, long open reading frame of 603 bases. The open reading frame, starting 34 residues from the 5' end of the cDNA, predicts a 21,990 Dalton protein of 201 amino acids. Comparison of this deduced amino acid sequence with the partial amino acid sequences of purified auxin-binding protein, revealed a perfect match, involving a total of 53 amino acid residues. The primary amino acid sequence includes a 38-amino-acid-long N-terminal hydrophobic leader sequence which could represent a signal for translocation of this protein to the endoplasmic reticulum. An additional signal is located at the C-terminal end, consisting of the amino acids KDEL known to be responsible for preventing secretion of proteins from the lumen of the endoplasmic reticulum in eucaryotic cells. The primary sequence contains a N-glycosylation site (-asp133-thr-thr-). This site was found to be glycosylated by a high-mannose-type oligosaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Copy DNAs corresponding to a highly repetitive, proline-rich protein from maize have been cloned by differential screening of a coleoptile cDNA library. The deduced amino acid sequence contains a single repetitive element of carrot extensin (Ser-Pro-Pro-Pro-Pro). The related mRNAs have a defined distribution in tissues of the plant and are accumulated mainly in the coleoptile node and root tip. A peptide that corresponds to one of the repetitive elements of the protein has been synthesized and antisera have been obtained in rabbits. These antibodies react against crude preparations of coleoptile cell wall and against polypeptides extracted following the protocols described for the extraction of extensin. From these data it is concluded that the cDNAs correspond to a family of cell wall glycoproteins from maize.  相似文献   

10.
In previous papers we found that the frequency of B chromosomes in native races of maize varies considerably in different populations. Moreover, we found genotypes that control high and low transmission rates (TR) of B chromosomes in the Pisingallo race. In the present work crosses were made to determine whether the genes controlling B-TR are located on the normal chromosome set (As) or on the B chromosomes (Bs). We made female f.0B × male m.2B crosses between and within high (H) and low (L) B-TR groups. The Bs were transmitted on the male side in all cases. The mean B-TR from the progeny of f.0B (H) × m.2B (H) and f.0B (H) × m.2B (L) crosses was significantly higher than that from f.0B (L) × m.2B (L) and f.0B (L) × m.2B (H) crosses. The results show that the B-TR of the crosses corresponds to the H or L B-TR of the 0B female parents irrespective of the Bs of the male parent. This indicates that B-TR is genetically controlled by the 0B female parent and that these genes are located on the A chromosomes.  相似文献   

11.
Twenty-one native populations (1120 individuals) of maize from Northern Argentina were studied. These populations, which belong to 13 native races, were cultivated at different altitudes (80-3620 m). Nineteen of the populations analyzed showed B chromosome (Bs) numerical polymorphism. The frequency of individuals with Bs varied from 0 to 94%. The number of Bs per plant varied from 0 to 8 Bs, with the predominant doses being 0, 1, 2, and 3. Those populations with varying number of Bs showed a positive and statistically significant correlation of mean number of Bs with altitude. The DNA content, in plants without Bs (A-DNA)(2n = 20), of 17 populations of the 21 studied was determined. A 36% variation (5.0-6.8 pg) in A-DNA content was found. A significant negative correlation between A-DNA content and altitude of cultivation and between A-DNA content and mean number of Bs was found. This indicates that there is a close interrelationship between the DNA content of A chromosomes and doses of Bs. These results suggest that there is a maximum limit to the mass of nuclear DNA so that Bs are tolerated as long as this maximum limit is not exceeded.  相似文献   

12.
Both NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) and ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) activities were present in the endosperm, embryo, pedicel and pericarp of maize ( Zea mays L. var. W64A × A619) kernels. The endosperm contained the highest proportions of each activity on a per tissue basis. In the endosperm, NADH-GOGAT and Fd-GOGAT activities increased 12- and 2.5-fold, respectively, during early zein accumulation. NADH-GOGAT and Fd-GOGAT activities were expressed in the upper, middle and lower portions of the endosperm in a manner that paralleled but preceded zein accumulation. Maize endosperm NADH-GOGAT was purified 159-fold using ammonium sulfate fractionation, anion exchange chromatography and dye-ligand chromatography. Apparent Km values for glutamine, α-ketoglutarate and NADH were 850, 19 and 1 μM, respectively. The results are consistent with endosperm GOGAT functioning to redistribute nitrogen from glutamine, the predominant nitrogenous compound delivered to the endosperm, into other amino acids needed for storage protein synthesis.  相似文献   

13.
When intact maize (Zea mays) mesophyll chloroplasts were illuminated in the presence of [32P]orthophosphate and subsequently subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, a major polypeptide species of Mr 100000 was found to be heavily labelled. This polypeptide was not found in maize mesophyll thylakoid or cytoplasmic fractions, but was localized solely in the chloroplast stroma. No phosphorylation of polypeptides in the 100000-Mr region was observed in the mesophyll chloroplasts from C3 species (where the primary product of CO2 fixation is a 3-carbon compound), suggesting that this polypeptide arises from a protein associated with C4 metabolism (where the first product of CO2 fixation is a 4-carbon compound). The 100kDa polypeptide was major component of the maize mesophyll chloroplast, comprising 10-15% of the total protein, which banded in an identical position to the apoprotein of the enzyme pyruvate, orthophosphate dikinase, which catalyses a reaction of the C4 cycle [Edwards & Walker (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis, Blackwell Scientific Publications, Oxford and London]. Phosphorylation in the 100kDa species was prohibited by treatment of lysed chloroplasts with antibody to pyruvate, orthophosphate dikinase (EC 2.7.9.1). These data suggest that the phosphorylated polypeptide observed after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis is the monomeric form of this enzyme. The 100kDa polypeptide was partially phosphorylated in darkness, but a significant increase in the degree of phosphorylation was found on illumination. This polypeptide was found to be dephosphorylated only slowly when the chloroplasts were returned to darkness. Maximum phosphorylation was observed in the presence of pyruvate or dihydroxyacetone phosphate, which also caused maximum activation of pyruvate, orthophosphate dikinase. Phosphorylation of the 100kDa polypeptide did not coincide with deactivation of pyruvate, orthophosphate dikinase, but maximum phosphorylation occurred under conditions that promoted maximum activity of the enzyme, at which time one phosphate group was associated with each enzyme molecule. Protein phosphorylation did not appear to arise from the reaction mechanism of the enzyme.  相似文献   

14.
15.
16.
钙离子参与一氧化氮促进盐胁迫下的玉米种子萌发   总被引:8,自引:0,他引:8  
0.001~1.0 mmol·L~(-1)一氧化氮(NO)供体硝普钠(SNP)均能提高玉米种子的发芽率,缓解盐胁迫下种子萌发的抑制作用,其中0.1 mmol·L~(-1)SNP的效果最佳。用胞外游离Ca~(2 )螯合剂EGTA、质膜Ca~(2 )通道阻断剂LaCl_3和液泡Ca~(2 )释放抑制剂钌红与0.1 mmol·L~(-1) SNP共处理,均能减弱或抵消SNP促进种子萌发的作用。据此推测,钙离子参与SNP促进盐胁迫下玉米种子萌发的信号转导过程。  相似文献   

17.
玉米种子萌发过程幼叶细胞中淀粉粒的积累观察   总被引:3,自引:0,他引:3  
陈健辉  方璟 《广西植物》2003,23(5):440-444,456
研究玉米萌发初期幼叶的发育。在幼叶不同的发育时期 ,分别用 PAS反应 ,考马氏蓝处理不同叶片 ,结果发现 :叶片细胞内的叶绿体在叶片即将抽出时才形成 ;从浸种萌动到叶片进行光合作用前 ,植株的营养供给 ,主要靠叶片自身淀粉粒的积聚提供 ;在幼叶抽出以前 ,胚芽鞘的薄壁细胞中布满淀粉粒 ,随着叶片的发育 ,这些淀粉粒逐渐减少 ;而幼叶中的淀粉粒的变化情况正好相反 :在种子萌发初期 ,幼叶细胞内只有少量的淀粉粒 ,以后淀粉粒的积累逐渐增多 ;在这个阶段无蛋白质的积聚。幼叶中维管束的发生是先中间后两边 ,维管束中的韧皮部先形成 ,木质部后发生。  相似文献   

18.
We are clarifying how the functional embryo growth occurs in germinating seeds of Solanum lycocarpum A. St.‐Hil., a nurse plant with a central role in forest dynamics in the Cerrado (a biodiversity hotspot). For that, we used classical seed germination measurements (germinability, mean germination time, mean germination rate, coefficient of variation of the germination time, synchronisation index and germination time range) and gene expression of mRNA codifying key proteins/enzymes for the success in the seed–seedling transition (Cyclin, Actin, Small Heat Shock Protein, Glutathione S‐transferase, Malate Dehydrogenase, Alcohol Dehydrogenase). Our findings demonstrate: (a) Although germination kinetics in S. lycocarpum seeds is slower than that in tomato seeds, the fold change of genes codifying key enzymes for the embryo development is similar in germinating seeds of both species. (b) The genes used here are useful, from a technical point of view, for classifying commercial seed samples of the species in relation to physiological quality. More notably, cyclin and malate dehydrogenase genes have a greater expression, both in germination sensu stricto and in immediate post‐germination. (c) A molecular framework for the embryo growth in germinating seeds of S. lycocarpum can be a functional explication for the species to be a nurse plant. Thus, the overlapping of classical and contemporary measurements is especially interesting to those species playing a central role in the environment, such as nurse plants, and may represent a new conservationist paradigm.  相似文献   

19.
The rth3 ( roothairless 3 ) mutant is specifically affected in root hair elongation. We report here the cloning of the rth3 gene via a PCR-based strategy (amplification of insertion mutagenized sites) and demonstrate that it encodes a COBRA-like protein that displays all the structural features of a glycosylphosphatidylinositol anchor. Genes of the COBRA family are involved in various types of cell expansion and cell wall biosynthesis. The rth3 gene belongs to a monocot-specific clade of the COBRA gene family comprising two maize and two rice genes. While the rice ( Oryza sativa ) gene OsBC1L1 appears to be orthologous to rth3 based on sequence similarity (86% identity at the protein level) and maize/rice synteny, the maize ( Zea mays L.) rth3-like gene does not appear to be a functional homolog of rth3 based on their distinct expression profiles. Massively parallel signature sequencing analysis detected rth3 expression in all analyzed tissues, but at relatively low levels, with the most abundant expression in primary roots where the root hair phenotype is manifested. In situ hybridization experiments confine rth3 expression to root hair-forming epidermal cells and lateral root primordia. Remarkably, in replicated field trials involving near-isogenic lines, the rth3 mutant conferred significant losses in grain yield.  相似文献   

20.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号