首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and play an important role in development and in many cellular processes. We have found that BMP-2, BMP-6, and BMP-9 induce the most potent osteogenic differentiation of mesenchymal stem cells. Expression profiling analysis has revealed that the Inhibitors of DNA binding/differentiation (Id)-1, Id-2, and Id-3 are among the most significantly up-regulated genes upon BMP-2, BMP-6, or BMP-9 stimulation. Here, we sought to determine the functional role of these Id proteins in BMP-induced osteoblast differentiation. We demonstrated that the expression of Id-1, Id-2, and Id-3 genes was significantly induced at the early stage of BMP-9 stimulation and returned to basal levels at 3 days after stimulation. RNA interference-mediated knockdown of Id expression significantly diminished the BMP-9-induced osteogenic differentiation of mesenchymal progenitor cells. Surprisingly, a constitutive overexpression of these Id genes also inhibited osteoblast differentiation initiated by BMP-9. Furthermore, we demonstrated that BMP-9-regulated Id expression is Smad4-dependent. Overexpression of the three Id genes was shown to promote cell proliferation that was coupled with an inhibition of osteogenic differentiation. Thus, our findings suggest that the Id helix-loop-helix proteins may play an important role in promoting the proliferation of early osteoblast progenitor cells and that Id expression must be down-regulated during the terminal differentiation of committed osteoblasts, suggesting that a balanced regulation of Id expression may be critical to BMP-induced osteoblast lineage-specific differentiation of mesenchymal stem cells.  相似文献   

2.
Prior to puberty the Sertoli cells undergo active cell proliferation, and at the onset of puberty they become a terminally differentiated postmitotic cell population that support spermatogenesis. The molecular mechanisms involved in the postmitotic block of pubertal and adult Sertoli cells are unknown. The four known helix-loop-helix ID proteins (i.e., Id1, Id2, Id3, and Id4) are considered dominant negative regulators of cellular differentiation pathways and act as positive regulators of cellular proliferation. ID proteins are expressed at low levels by postpubertal Sertoli cells and are transiently induced by serum. The hypothesis tested was that ID proteins can induce a terminally differentiated postmitotic Sertoli cell to reenter the cell cycle if they are constitutively expressed. To test this hypothesis, ID1 and ID2 were stably integrated and individually overexpressed in postmitotic rat Sertoli cells. Overexpression of ID1 or ID2 allowed postmitotic Sertoli cells to reenter the cell cycle and undergo mitosis. The cells continued to proliferate even after 300 cell doublings. The functional markers of Sertoli cell differentiation such as transferrin, inhibin alpha, Sert1, and androgen binding protein (ABP) continued to be expressed by the proliferating Sertoli cells, but at lower levels. FSH receptor expression was lost in the proliferating Sertoli cell-Id lines. Some Sertoli cell genes, such as cyclic protein 2 (cathepsin L) and Sry-related HMG box protein-11 (Sox11) increase in expression. At no stage of proliferation did the cells exhibit senescence. The expression profile as determined with a microarray protocol of the Sertoli cell-Id lines suggested an overall increase in cell cycle genes and a decrease in growth inhibitory genes. These results demonstrate that overexpression of ID1 and ID2 genes in a postmitotic, terminally differentiated cell type have the capacity to induce reentry into the cell cycle. The observations are discussed in regards to potential future applications in model systems of terminally differentiated cell types such as neurons or myocytes.  相似文献   

3.
4.
SOX (Sry-related HMG box) family proteins, which have an evolutionarily conserved DNA binding domain, have crucial roles in cell differentiation. However, their target genes remain enigmatic. Some members of the SOX family may have roles in regulation of cell proliferation. We established stable NT2/D1 cell lines overexpressing SOX15 (SOX15-NT2/D1), and a modified 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the SOX15-NT2/D1 cells exhibited significantly slower growth than the controls. Flow cytometry analysis revealed that an increased fraction of the SOX15-NT2/D1 cells were in G1-G0. In addition, a microarray analysis identified 26 genes that were up-regulated in the SOX15-NT2/D1 cells, but none that were down-regulated genes. Among the up-regulated genes, IGFBP5, S100A4, ID2, FABP5, MTSS1, PDCD4 have been shown to be related to cell proliferation and/or the cell cycle.  相似文献   

5.
6.
7.
8.
Stromal cells follow a vascular smooth muscle differentiation pathway. However, cell culture models performed from human bone marrow do not allow the obtention of a large proportion of highly differentiated smooth muscle cells (SMC) and their differentiation pathways remain unclear. We have characterized a new model of SMC differentiation from human bone marrow stromal cells by using different factors (bFGF, EGF, insulin and BMP-4). A relative homogeneous population of differentiated SMC was reproducibly obtained in short-term culture with high expression of SMC markers. Id gene expression was investigated and showed that (1) Id2 mRNA expression was upregulated during SMC differentiation without change of Id1 mRNA and (2) Id1 gene expression highly increased concomitantly with a decrease of SMC markers while Id2 mRNA was slightly modulated. Our data suggested that Id genes are potentially implicated in the differentiation pathway of human SMC from bone marrow.  相似文献   

9.
Transforming growth factors beta (TGF-betas) inhibit growth of epithelial cells and induce differentiation changes, such as epithelial-mesenchymal transition (EMT). On the other hand, bone morphogenetic proteins (BMPs) weakly affect epithelial cell growth and do not induce EMT. Smad4 transmits signals from both TGF-beta and BMP pathways. Stimulation of Smad4-deficient epithelial cells with TGF-beta 1 or BMP-7 in the absence or presence of exogenous Smad4, followed by cDNA microarray analysis, revealed 173 mostly Smad4-dependent, TGF-beta-, or BMP-responsive genes. Among 25 genes coregulated by both factors, inhibitors of differentiation Id2 and Id3 showed long-term repression by TGF-beta and sustained induction by BMP. The opposing regulation of Id genes is critical for proliferative and differentiation responses. Hence, ectopic Id2 or Id3 expression renders epithelial cells refractory to growth inhibition and EMT induced by TGF-beta, phenocopying the BMP response. Knockdown of endogenous Id2 or Id3 sensitizes epithelial cells to BMP, leading to robust growth inhibition and induction of transdifferentiation. Thus, Id genes sense Smad signals and create a permissive or refractory nuclear environment that defines decisions of cell fate and proliferation.  相似文献   

10.
11.
12.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by aggressive proliferation of synovial tissue leading to destruction of cartilage and bone. To identify molecules which play a crucial role for the pathogenesis, we compared mRNA expression pattern of RA synovium with that of osteoarthritis (OA), using the differential display. From the panel of differentially expressed genes, ID1 (inhibitor of differentiation 1) was considered to be particularly relevant to the pathogenesis of RA, because Id family genes have been shown to play a role in cell proliferation and angiogenesis. To examine whether the up-regulation of these genes is consistently observed in the patients with RA, mRNA levels of ID1 and ID3 in the synovial tissues from 13 patients with RA and 6 patients with OA were semi-quantitatively analyzed by RT-PCR. Mean mRNA levels of ID1 and ID3 were significantly elevated in RA synovia compared with OA by 8.6-fold (P = 0.0044) and 3.3-fold (P = 0.0085), respectively. Immunohistochemistry revealed striking staining of Id1 and Id3 in the endothelial cells, suggesting a possible role of Id in severe angiogenesis observed in RA. The expression of Id family genes in the synovium constitutes a new finding of particular interest. Their functional role as well as their contribution to the genetic susceptibility to RA requires further investigation.  相似文献   

13.
Testicular germ cell tumours (GCTs) mostly affect young men at age 17‐40. Although high cure rates can be achieved by orchiectomy and chemotherapy, GCTs can still be a lethal threat to young patients with metastases or therapy resistance. Thus, alternative treatment options are needed. Based on studies utilising GCT cell lines, the histone deacetylase inhibitor romidepsin is a promising therapeutic option, showing high toxicity at very low doses towards cisplatin‐resistant GCT cells, but not fibroblasts or Sertoli cells. In this study, we extended our analysis of the molecular effects of romidepsin to deepen our understanding of the underlying mechanisms. Patients will benefit from these analyses, since detailed knowledge of the romidepsin effects allows for a better risk and side‐effect assessment. We screened for changes in histone acetylation of specific lysine residues and analysed changes in the DNA methylation landscape after romidepsin treatment of the GCT cell lines TCam‐2, 2102EP, NCCIT and JAR, while human fibroblasts were used as controls. In addition, we focused on the role of the dehydrogenase/reductase DHRS2, which was strongly up‐regulated in romidepsin treated cells, by generating DHRS2‐deficient TCam‐2 cells using CRISPR/Cas9 gene editing. We show that DHRS2 is dispensable for up‐regulation of romidepsin effectors (GADD45B, DUSP1, ZFP36, ATF3, FOS, CDKN1A, ID2) but contributes to induction of cell cycle arrest. Finally, we show that a combinatory treatment of romidepsin plus the gluccocorticoid dexamethasone further boosts expression of the romidepsin effectors and reduces viability of GCT cells more strongly than under single agent treatment. Thus, romidepsin and dexamethasone might represent a new combinatorial approach for treatment of GCT.  相似文献   

14.
Mesenchymal cells, primarily fibroblasts and myofibroblasts, are the principal matrix-producing cells during pulmonary fibrogenesis. Transforming growth factor (TGF)-beta signaling plays an important role in stimulating the expression of type I collagen of these cells. Bone morphogenetic protein (BMP)-7, a member of the TGF-beta superfamily, has been reported to oppose the fibrogenic activity of TGF-beta1. Here, we have addressed the effects of BMP-7 on the fibrogenic activity of pulmonary myofibroblasts. We first established cell lines from the lungs of transgenic mice harboring the COL1A2 upstream sequence fused to luciferase. They displayed a spindle shape and expressed vimentin and alpha-smooth muscle actin, but not E-cadherin. COL1A2 promoter activity was dose dependently induced by TGF-beta1, which was further augmented by adenoviral overexpression of Smad3, but was downregulated by Smad7. Under the identical condition, adenoviral overexpression of BMP-7 attenuated the TGF-beta1-dependent COL1A2 promoter activity. By immunocytochemistry, the ectopic expression of BMP-7 led to the nuclear localization of phospho-Smad1/5/8 and suppressed that of Smad3. BMP-7 suppressed the expression of mRNAs for COL1A2 and tissue inhibitor of metalloproteinase-2 while increasing those of inhibitors of differentiation (Id) 2 and 3. Ectopic expression of Id2 and Id3 was found to decrease the COL1A2 promoter activity. Finally, BMP-7 and Id2 decreased TGF-beta1-dependent collagen protein secretion. In conclusion, these data demonstrate that BMP-7 antagonizes the TGF-beta1-dependent fibrogenic activity of mouse pulmonary myofibroblastic cells by inducing Id2 and Id3.  相似文献   

15.
Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade.  相似文献   

16.
17.
Granulosa cell tumors (GCTs) are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.  相似文献   

18.
HL-60 is a human promyelocytic cell line which was found to be capable of differentiating toward a macrophage-like or granulocyte-like phenotype. Histochemical analysis demonstrated that incubation of cells in the presence of phorbol myristate acetate (PMA) or 1,25-dihydroxyvitamin D3 induced varying degrees of monocytic differentiation, while incubation in the presence of retinoic acid (RA) or dimethyl sulfoxide (DMSO) induced granulocytic differentiation. The differentiation induced by PMA, RA, and to a lesser extent DMSO, was accompanied by the induction of plasminogen activator inhibitor expression. mRNA analysis of control and PMA-induced cultures revealed the induction of a 2-kb message in treated cells which hybridized with a PAI-2-specific oligonucleotide probe. This is consistent with the literature concerning the expression of PAI by macrophages and granulocytes. No hybridization was detected with a PAI-1 specific probe. Expression of PAI by cells of hematopoietic origin appears to be associated with differentiation or stimulation of committed cells. Furthermore, PAI-2 expression by HL-60 cells is not restricted to one specific hematopoietic lineage. Since other cells of hematopoietic origin such as platelets express PAI-1, future studies using pluripotential cell lines could provide information on the initial events of lineage commitment and gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号