首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

2.
Metabolic and hormonal responses to prolonged treadmill exercise in dogs fed a fat-enriched meal 4 h prior to the exercise were compared to those measured 4 h after a mixed meal or in the postabsorptive state. Ingestion of the fat-enriched meal caused significant elevations in the resting values of plasma triglyceride (TG), free fatty acid (FFA), and glycerol concentrations. A reduction of the plasma TG concentration (from 1.6 +/- 0.2 to 1.1 +/- 0.10 mmol X l-1, P less than 0.005) occurred only in dogs exercising after the fat-enriched meal. No significant changes in this variable were noted in dogs fed a mixed meal, whilst in the postabsorptive state exercise caused an increase in the plasma TG level (from 0.42 +/- 0.03 to 0.99 +/- 0.11 mmol X l-1, P less than 0.01). The exercise-induced elevations in plasma FFA and glycerol concentrations were the highest in the dogs given the fat-enriched meal. Plasma glycerol during exercise correlated with the initial values of circulating TG (r = 0.73). The plasma FFA-glycerol ratio, at the end of exercise was lowest in the dogs taking the fat-enriched meal (1.39 +/- 0.19), suggesting an increased utilization of FFA in comparison with that in the postabsorptive state (3.27 +/- 0.37) or after a mixed meal (2.88 +/- 0.55). Basal serum insulin (IRI) concentrations were similarly enhanced in dogs fed fat-enriched and mixed meals, and they were reduced to control values within 60 min of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We assessed the effects of naloxone, an opioid antagonist, on exercise capacity in 13 men and 5 women (mean age = 30.1 yr, range = 21-35 yr) during a 25 W/min incremental cycle ergometer test to exhaustion on different days during familiarization trial and then after 30 mg (iv bolus) of naloxone or placebo (Pl) in a double-blind, crossover design. Minute ventilation (Ve), O(2) consumption (Vo(2)), CO(2) production, and heart rate (HR) were monitored. Perceived exertion rating (0-10 scale) and venous samples for lactate were obtained each minute. Lactate and ventilatory thresholds were derived from lactate and gas-exchange data. Blood pressure was obtained before exercise, 5 min postinfusion, at maximum exercise, and 5 min postexercise. There were no control-Pl differences. The naloxone trial demonstrated decreased exercise time (96% Pl; P < 0.01), total cumulative work (96% Pl; P < 0.002), peak Vo(2) (94% Pl; P < 0.02), and HR (96% Pl; P < 0.01). Other variables were unchanged. HR and Ve were the same at the final common workload, but perceived exertion was higher (8.1 +/- 0.5 vs. 7.1 +/- 0.5) after naloxone than Pl (P < 0.01). The threshold for effort perception amplification occurred at approximately 60 +/- 4% of Pl peak Vo(2). Thus we conclude that peak work capacity was limited by perceived exertion, which can be attenuated by endogenous opioids rather than by physiological limits.  相似文献   

4.
The purpose of this study was to examine the effects of pre-exercise glucose and fructose feedings on muscle glycogen utilization during exercise in six well-trained runners (VO2max = 68.2 +/- 3.4 ml X kg-1 X min-1). On three separate occasions, the runners performed a 30 min treadmill run at 70% VO2max. Thirty minutes prior to exercise each runner ingested 75 g of glucose (trial G), 75 g of fructose (trial F) or 150 ml of a sweetened placebo (trial C). During exercise, no differences were observed between any of the trials for oxygen uptake, heart rate or perceived exertion. Serum glucose levels were elevated as a result of the glucose feeding (P less than 0.05) reaching peak levels at 30 min post-feeding (7.90 +/- 0.24 mmol X l-1). With the onset of exercise, glucose levels dropped to a low of 5.89 +/- 0.85 mmol X l-1 at 15 min of exercise in trial G. Serum glucose levels in trials F and C averaged 6.21 +/- 0.31 mmol X l-1 and 5.95 +/- 0.23 mmol X l-1 respectively, and were not significantly different (P less than 0.05). There were also no differences in serum glucose levels between any of the trials at 15 and 30 min of exercise.  相似文献   

5.
We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O(2), 111 +/- 12 W, 72 +/- 3% hypoxia Vo(2 peak); 72% Hypoxia) or under normoxic conditions (20.9% O(2)) matched to the same absolute (111 +/- 12 W, 51 +/- 1% normoxia Vo(2 peak); 51% Normoxia) or relative (to Vo(2 peak)) intensity (171 +/- 18 W, 73 +/- 1% normoxia Vo(2 peak); 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPKalpha Thr(172) phosphorylation, ACCbeta Ser(221) phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.  相似文献   

6.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

7.
This study compared the effects of hypohydration (HYP) on endurance exercise performance in temperate and cold air environments. On four occasions, six men and two women (age = 24 +/- 6 yr, height = 170 +/- 6 cm, weight = 72.9 +/- 11.1 kg, peak O2 consumption = 48 +/- 9 ml.kg(-1).min(-1)) were exposed to 3 h of passive heat stress (45 degrees C) in the early morning with [euhydration (EUH)] or without (HYP; 3% body mass) fluid replacement. Later in the day, subjects sat in a cold (2 degrees C) or temperate (20 degrees C) environment with minimal clothing for 1 h before performing 30 min of cycle ergometry at 50% peak O2 consumption followed immediately by a 30-min performance time trial. Rectal and mean skin temperatures, heart rate, and ratings of perceived exertion measurements were made at regular intervals. Performance was assessed by the total amount of work (kJ) completed in the 30-min time trial. Skin temperature was significantly lower in the cold compared with the temperate trial, but there was no independent effect of hydration. Rectal temperature in both HYP trials was higher than EUH after 60 min of exercise, but the difference was only significant within the temperate trials (P < 0.05). Heart rate was significantly higher at 30 min within the temperate trial (HYP > EUH) and at 60 min within the cold trial (HYP > EUH) (P < 0.05). Ratings of perceived exertion increased over time with no differences among trials. Total work performed during the 30-min time trial was not influenced by environment but was less (P < 0.05) for HYP than EUH in the temperate trials. The corresponding change in performance (EUH-HYP) was greater for temperate (-8%) than for cold (-3%) (P < 0.05). These data demonstrate that 1) HYP impairs endurance exercise performance in temperate but not cold air but 2) cold stress per se does not.  相似文献   

8.
Prior exercise decreases postprandial plasma triacylglycerol (TG) concentrations, possibly through changes to skeletal muscle TG extraction. We measured postprandial substrate extraction across the leg in eight normolipidemic men aged 21-46 yr. On the afternoon preceding one trial, subjects ran for 2 h at 64 +/- 1% of maximal oxygen uptake (exercise); before the control trial, subjects had refrained from exercise. Samples of femoral arterial and venous blood were obtained, and leg blood flow was measured in the fasting state and for 6 h after a meal (1.2 g fat, 1.2 g carbohydrate/kg body mass). Prior exercise increased time averaged postprandial TG clearance across the leg (total TG: control, 0.079 +/- 0.014 ml.100 ml tissue(-1).min(-1) ; exercise, 0.158 +/- 0.023 ml.100 ml tissue(-1).min(-1), P <0.01), particularly in the chylomicron fraction, so that absolute TG uptake was maintained despite lower plasma TG concentrations (control, 1.53 +/- 0.13 mmol/l; exercise, 1.01 +/- 0.16 mmol/l, P < 0.001). Prior exercise increased postprandial leg blood flow and glucose uptake (both P < 0.05). Mechanisms other than increased leg TG uptake must account for the effect of prior exercise on postprandial lipemia.  相似文献   

9.
In an effort to determine the effects of carbohydrate (CHO) feedings immediately before exercise in both the fasted and fed state, 10 well-trained male cyclists [maximum O2 consumption (VO2 max), 4.35 +/- 0.11 l/min)] performed 45 min of cycling at 77% VO2 max followed by a 15-min performance ride on an isokinetic cycle ergometer. After a 12-h fast, subjects ingested 45 g of liquid carbohydrate (LCHO), solid carbohydrate confectionery bar (SCHO), or placebo (P) 5 min before exercise. An additional trial was performed in which a high-CHO meal (200 g) taken 4 h before exercise was combined with a confectionery bar feeding (M + SCHO) immediately before the activity. At 10 min of exercise, serum glucose values were elevated by 18 and 24% during SCHO and LCHO, respectively, compared with P. At 0 and 45 min no significant differences were observed in muscle glycogen concentration or total use between the four trials. Total work produced during the final 15 min of exercise was significantly greater (P less than 0.05) during M + SCHO (194,735 +/- 9,448 N X m), compared with all other trials and significantly greater (P less than 0.05) during LCHO and SCHO (175,204 +/- 11,780 and 176,013 +/- 10,465 N X m, respectively) than trial P (159,143 +/- 11,407 N X m). These results suggest that, under conditions when CHO stores are less than optimal, exercise performance is enhanced with the ingestion of 45 g of CHO 5 min before 1 h of intense cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study investigated the effect of reduced free fatty acid (FFA) availability on pyruvate dehydrogenase activation (PDHa) and carbohydrate metabolism during moderate aerobic exercise. Eight active male subjects cycled for 40 min at 55% Vo(2 peak) on two occasions. During one trial, subjects ingested 20 mg/kg body mass of the antilipolytic drug nicotinic acid (NA) during the hour before exercise to reduce FFA. Nothing was ingested in the control trial (CON). Blood and expired gas measurements were obtained throughout the trials, and muscle biopsy samples were obtained immediately before exercise and at 5, 20, and 40 min of exercise. Plasma FFA were lower in the NA trial (0.13 +/- 0.01 vs. 0.48 +/- 0.03 mM, P < 0.05), and the respiratory exchange ratio (RER) was increased with NA (0.93 +/- 0.01 vs. 0.89 +/- 0.01, P < 0.05), resulting in a 14.5 +/- 1.8% increase in carbohydrate oxidation compared with CON. PDHa increased rapidly in both trials at exercise onset but was approximately 15% higher (P < 0.05) throughout exercise in the NA trial (2.44 +/- 0.19 and 2.07 +/- 0.12 mmol x kg wet muscle(-1) x min(-1) for NA and CON at 40 min). Muscle glycogenolysis was 15.3 +/- 9.6% greater in the NA trial vs. the CON trial but did not reach statistical significance. Glucose 6-phosphate contents were elevated (P < 0.05) in the NA trial at 30 and 40 min of exercise, but pyruvate and lactate contents were unaffected. These data demonstrate that the reduction of exogenous FFA availability increased the activation of PDH and carbohydrate oxidation during moderate aerobic exercise in men. The increased activation of PDH was not explained by changes in muscle pyruvate or the ATP/ADP ratio but may be related to a decrease in the NADH/NAD(+) ratio or an epinephrine-induced increase in calcium concentration.  相似文献   

11.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

12.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

13.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on endurance capacity and metabolic responses during arm exercise were determined in 10 untrained males (20-26 yr). Subjects performed arm ergometer exercise (60% peak O2 consumption) to exhaustion after consumption of standard diets (55% carbohydrate, 15% protein, 30% fat; 35 kcal/kg) containing either 100 g of Polycose (placebo, P) or DHAP (3:1, treatment) substituted for a portion of carbohydrate. The two diets were administered in a random order, and each was consumed for a 7-day period. Biopsy of the triceps muscle was obtained immediately before and after exercise. Blood samples were drawn through radial artery and axillary vein catheters at rest, after 60 min of exercise, and at exercise termination. Arm endurance was 133 +/- 20 min after P and 160 +/- 22 min after DHAP (P less than 0.01). Triceps glycogen at rest was 88 +/- 8 (P) and 130 +/- 19 mmol/kg (DHAP) (P less than 0.05). Whole arm arteriovenous glucose difference (mmol/l) was greater (P less than 0.05) for DHAP than P at rest (0.60 +/- 0.12 vs. 0.05 +/- 0.09) and after 60 min of exercise (1.00 +/- 0.12 vs. 0.36 +/- 0.11), but it did not differ at exhaustion. Neither respiratory exchange ratio nor respiratory quotient differed between trials at rest, after 60 min of exercise, or at exhaustion. Plasma free fatty acid, glycerol, beta-hydroxybutyrate, catecholamines, and insulin were similar during rest and exercise for both diets. Feeding DHAP for 7 days increased arm muscle glucose extraction before and during exercise, thereby enhancing submaximal arm endurance capacity.  相似文献   

14.
The effects of exercise on energy substrate metabolism persist into the postexercise recovery period. We sought to derive bicarbonate retention factors (k) to correct for carbon tracer oxidized, but retained from pulmonary excretion before, during, and after exercise. Ten men and nine women received a primed-continuous infusion of [(13)C]bicarbonate (sodium salt) under three different conditions: 1) before, during, and 3 h after 90 min of exercise at 45% peak oxygen consumption (Vo(2peak)); 2) before, during, and 3 h after 60 min of exercise at 65% Vo(2peak); and 3) during a time-matched resting control trial, with breath samples collected for determination of (13)CO(2) excretion rates. Throughout the resting control trial, k was stable and averaged 0.83 in men and women. During exercise, average k in men was 0.93 at 45% Vo(2peak) and 0.94 at 65% Vo(2peak), and in women k was 0.91 at 45% Vo(2peak) and 0.92 at 65% Vo(2peak), with no significant differences between intensities or sexes. After exercise at 45% Vo(2peak), k returned rapidly to control values in men and women, but following exercise at 65% Vo(2peak), k was significantly less than control at 30 and 60 min postexercise in men (0.74 and 0.72, respectively, P < 0.05) and women (0.75 and 0.76, respectively, P < 0.05) with no significant postexercise differences between men and women. We conclude that bicarbonate/CO(2) retention is transiently increased in men and women for the first hour of postexercise recovery following endurance exercise bouts of hard but not moderate intensity.  相似文献   

15.
Intramyocellular lipid (IMCL) has been associated with insulin resistance. However, an association between IMCL and insulin resistance might be modulated by oxidative capacity in skeletal muscle. We examined the hypothesis that 12 wk of exercise training would increase both IMCL and the oxidative capacity of skeletal muscle in older (67.3 +/- 0.7 yr), previously sedentary subjects (n = 13; 5 men and 8 women). Maximal aerobic capacity (Vo(2 max)) increased from 1.65 +/- 0.20 to 1.85 +/- 0.14 l/min (P < 0.05), and systemic fat oxidation induced by 1 h of cycle exercise at 45% of Vo(2 max) increased (P < 0.05) from 15.03 +/- 40 to 19.29 +/- 0.80 (micromol.min(-1).kg fat-free mass(-1)). IMCL, determined by quantitative histological staining in vastus lateralis biopsies, increased (P < 0.05) from 22.9 +/- 1.9 to 25.9 +/- 2.6 arbitrary units (AU). The oxidative capacity of muscle, determined by succinate dehydrogenase staining intensity, significantly increased (P < 0.05) from 75.2 +/- 5.2 to 83.9 +/- 3.6 AU. The percentage of type I fibers significantly increased (P < 0.05) from 35.4 +/- 2.1 to 40.1 +/- 2.3%. In conclusion, exercise training increases IMCL in older persons in parallel with an enhanced capacity for fat oxidation.  相似文献   

16.
Seven well-trained male cyclists were studied during 105 min of cycling (65% of maximal oxygen uptake) and a 15-min "performance ride" to compare the effects of 4- and 8-h preexercise carbohydrate (CHO) feedings on substrate use and performance. A high CHO meal was given 1) 4-h preexercise (M-4), 2) 8-h preexercise (M-8), 3) 4-h preexercise with CHO feedings during exercise (M-4CHO), and 4) 8-h preexercise with CHO feedings during exercise (M-8CHO). Blood samples were obtained at 0, 15, 60, 105, and 120 min and analyzed for lactate, glucose, insulin, and glycerol. Total work output during the performance ride was similar for the M-4 (217,893 +/- 13,348 N/m) and M-8 trials (216,542 +/- 13,905) and was somewhat higher for the M-4CHO (223,994 +/- 14,387) and M-8CHO (224,702 +/- 15,709) trials (P = 0.059, NS). Glucose was significantly elevated throughout exercise, and insulin levels were significantly elevated at 15 and 60 min during M-4CHO and M-8CHO compared with M-4 and M-8 trials. Glycerol levels were significantly lower during the CHO feeding trials compared with placebo and were not significantly different during exercise when the subject had fasted an additional 4 h. The results of this study suggest that when preexercise meals are ingested 4 or 8 h before submaximal cycling exercise, substrate use and performance are similar.  相似文献   

17.
We tested the hypothesis that O(2) uptake (Vo(2)) kinetics at the onset of heavy exercise would be altered in a state of muscle fatigue and prior metabolic acidosis. Eight well-trained cyclists completed two identical bouts of 6-min cycling exercise at >85% of peak Vo(2) separated by three successive bouts of 30 s of sprint cycling. Not only was baseline Vo(2) elevated after prior sprint exercises but also the time constant of phase II Vo(2) kinetics was faster (28.9 +/- 2.4 vs. 22.2 +/- 1.7 s; P < 0.05). CO(2) output (Vco(2)) was significantly reduced throughout the second exercise bout. Subsequently Vo(2) was greater at 3 min and increased less after this after prior sprint exercise. Cardiac output, estimated by impedance cardiography, was significantly higher in the first 2 min of the second heavy exercise bout. Normalized integrated surface electromyography of four leg muscles and normalized mean power frequency were not different between exercise bouts. Vo(2) and Vco(2) kinetic responses to heavy exercise were markedly altered by prior multiple sprint exercises.  相似文献   

18.
This study was designed to assess differences in the intensity of exercise to attenuate postprandial lipemia (PPL). Thirteen healthy men (age 23.8 +/- 0.9 yr) participated in three random-ordered trials: in low-(25% peak oxygen consumption; Low) and moderate-intensity (65% peak oxygen consumption; Mod) exercise trials, which were completed 1 h before a high-fat meal (1.3 g fat/kg body mass), and a control (Con), fat meal only, trial. Venous blood samples were obtained before the fat meal, and at 2, 4, 6, 8, and 20 h after the fat meal. PPL in the Mod trial (267 +/- 50 mg.dl-1.8 h) was lower compared with that in either Con (439 +/- 81 mg.dl-1.8 h) or Low (403 +/- 91 mg.dl-1.8 h) trials (P < 0.05), whereas there was no difference in PPL between Con and Low trials (P > 0.05). High-density lipoprotein cholesterol (HDL-C) and HDL subtype 2 cholesterol were not different between or within trials (P > 0.05). Postprandial insulinemia was lower in the Mod trial (20.5 +/- 5.7 microIU.ml-1.8 h; P < 0.05), but not in the Low trial (31.4 +/- 4.7 microIU.ml-1.8 h), compared with that in the Con trial (34.9 +/- 5.0 microIU.ml-1.8 h). Postheparin lipoprotein lipase activity at 8 h was higher in the Low trial compared with that in either Con or Mod trials, whereas there were no differences between trials at 20 h. These results suggest that, when exercise is performed 1 h before a fat meal, only exercise of moderate but not of low intensity attenuates PPL and that this effect is not associated with changes in postheparin lipoprotein lipase activity.  相似文献   

19.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated whether the antioxidant compound N-acetylcysteine (NAC) augments time to fatigue during prolonged, submaximal cycling exercise. Seven men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling exercise, comprising 45 min at 70% of peak oxygen consumption (Vo2 peak) and then to fatigue at 90% Vo2 peak. NAC was intravenously infused at 125 mg.kg-1.h-1 for 15 min and then 25 mg.kg-1.h-1 for 20 min before and throughout exercise, which was continued until fatigue. Arterialized venous blood was analyzed for NAC concentration, hematology, and plasma electrolytes. NAC induced no serious adverse reactions and did not affect hematology, acid-base status, or plasma electrolytes. Time to fatigue was reproducible in preliminary trials (coefficient of variation 7.4 +/- 1.2%) and was not augmented by NAC (NAC 14.6 +/- 4.5 min; control 12.8 +/- 5.4 min). However, time to fatigue during NAC trials was correlated with Vo2 peak (r = 0.78; P < 0.05), suggesting that NAC effects on performance may be dependent on training status. The rise in plasma K+ concentration at fatigue was attenuated by NAC (P < 0.05). The ratio of rise in K+ concentration to work and the percentage change in time to fatigue tended to be inversely related (r = -0.71; P < 0.07). Further research is required to clarify a possible training status-dependent effect of NAC on muscle performance and K+ regulation.  相似文献   

20.
The purpose of this study was to characterize left ventricular (LV) diastolic filling and systolic performance during graded arm exercise and to examine the effects of lower body positive pressure (LBPP) or concomitant leg exercise as means to enhance LV preload in aerobically trained individuals. Subjects were eight men with a mean age (+/-SE) of 26.8 +/- 1.2 yr. Peak exercise testing was first performed for both legs [maximal oxygen uptake (Vo(2)) = 4.21 +/- 0.19 l/min] and arms (2.56 +/- 0.16 l/min). On a separate occasion, LV filling and ejection parameters were acquired using non-imaging scintography using in vivo red blood cell labeling with technetium 99(m) first during leg exercise performed in succession for 2 min at increasing grades to peak effort. Graded arm exercise (at 30, 60, 80, and 100% peak Vo(2)) was performed during three randomly assigned conditions: control (no intervention), with concurrent leg cycling (at a constant 15% leg maximal Vo(2)) or with 60 mmHg of LBPP using an Anti G suit. Peak leg exercise LV ejection fraction was higher than arm exercise (60.9 +/- 1.7% vs. 55.9 +/- 2.7%; P < 0.05) as was peak LV end-diastolic volume was reported as % of resting value (110.3 +/- 4.4% vs. 97 +/- 3.7%; P < 0.05) and peak filling rate (end-diastolic volume/s; 6.4 +/- 0.28% vs. 5.2 +/- 0.25%). Concomitant use of either low-intensity leg exercise or LBPP during arm exercise failed to significantly increase LV filling or ejection parameters. These observations suggest that perturbations in preload fail to overcome the inherent hemodynamic conditions present during arm exercise that attenuate LV performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号