共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabotropic L-glutamate receptors are involved in various forms of synaptic plasticity in the hippocampus. The use of a new antagonist (LY341495) that blocks all known metabotropic L-glutamate receptors in the brain, together with subtype-selective antagonists, has identified multiple roles both for cloned and novel metabotropic L-glutamate receptors in hippocampal long-term potentiation and long-term depression. 相似文献
2.
Cai F Wang F Lin FK Liu C Ma LQ Liu J Wu WN Wang W Wang JH Chen JG 《Free radical biology & medicine》2008,45(7):964-970
Alzheimer disease (AD) is an age-related neurodegenerative disorder. Many observations indicate that impaired redox regulation is implicated in AD with synaptic failure. The aim of the current investigation was to characterize the role of redox-active agents on long-term potentiation (LTP) in the CA1 region of rat hippocampal slices and to elucidate the molecular sequence of events leading to these changes. The results presented here indicate that the membrane-permeable oxidizing agent chloramine-T (CH-T) inhibits the induction of LTP, whereas the membrane-permeable reducing agent dithiothreitol (DTT) enhances the induction of LTP. In contrast, neither the membrane-impermeable oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) nor the membrane-impermeable reducing agent tris-(2-carboxyethyl) phosphine (TCEP) can affect the induction of LTP. The inhibition of LTP by CH-T can be restored by pretreatment with DTT but not with TCEP, whereas the enhancement of LTP by DTT can be reversed by pretreatment with CH-T but not with DTNB. We also provide evidence that the CH-T-evoked inhibition of LTP is mediated via activation of glycogen synthase kinase-3beta (GSK-3beta), whereas the DTT-evoked enhancement of LTP is mediated via inactivation of GSK-3beta. These findings will benefit the understanding of the redox contribution to the mechanisms underlying synaptic plasticity and AD pathogenesis. 相似文献
3.
The mechanisms that underlie axon formation are still poorly understood. GSK3 has been recently implicated in establishing the axon and in its elongation. We have used four different GSK3 inhibitors to determine the role of GSK3 activity in hippocampal neurons at different periods of time. Inhibition of GSK3 activity impairs axon formation. The "critical period" of this activity of GSK3 is at least the first 24h since afterwards the inhibition of GSK3 does not compromise the process of elongation, although it exacerbates axon branching. Moreover, interference RNAs impeding the expression of the GSK3 alpha or beta isoforms in hippocampal neurons prevents an axon from forming. 相似文献
4.
5.
This study examined if there are interactions between two key proteins that oppositely regulate intrinsic apoptosis, X-linked inhibitor of apoptosis protein (XIAP), a key suppressor of apoptosis that binds to inhibit active caspases, and glycogen synthase kinase-3 (GSK3), which promotes intrinsic apoptosis. Immunoprecipitation of GSK3β revealed that XIAP associates with GSK3β, as do two other members of the IAP family, cIAP-1, and cIAP-2. Cell fractionation revealed that XIAP is predominantly cytosolic, cIAP-1 is predominantly nuclear and nearly all of the nuclear cIAP-1 and cIAP-2 are associated with GSK3. Expression of individual domains of XIAP demonstrated that the RING domain of XIAP associates with GSK3. Inhibition of GSK3 did not alter the binding of XIAP to active caspase-9 or caspase-3 after stimulation of apoptosis with staurosporine. However, inhibition of GSK3 reduced apoptosis and apoptosome formation, including the recruitments of caspase-9 and XIAP to Apaf-1, in response to staurosporine treatment. Cell free measurements of apoptosome-induced caspase-3 activation demonstrated that GSK3 acts upstream of the apoptosome to facilitate intrinsic apoptotic signaling. This facilitation was blocked by overexpression of XIAP. These findings indicate that the RING domain of XIAP (and probably cIAP-1 and cIAP-2) associates with GSK3, GSK3 acts upstream of the apoptosome to promote intrinsic apoptosis, and the association between XIAP and GSK3 may block the pro-apoptotic function of GSK3. 相似文献
6.
7.
Chou HY Howng SL Cheng TS Hsiao YL Lieu AS Loh JK Hwang SL Lin CC Hsu CM Wang C Lee CI Lu PJ Chou CK Huang CY Hong YR 《Biochemistry》2006,45(38):11379-11389
Although prominent FRAT/GBP exhibits a limited degree of homology to Axin, the binding sites on GSK3 for FRAT/GBP and Axin may overlap to prevent the effect of FRAT/GBP in stabilizing beta-catenin in the Wnt pathway. Using a yeast two-hybrid screen, we identified a novel protein, GSK3beta interaction protein (GSKIP), which binds to GSK3beta. We have defined a 25-amino acid region in the C-terminus of GSKIP that is highly similar to the GSK3beta interaction domain (GID) of Axin. Using an in vitro kinase assay, our results indicate that GSKIP is a good GSK3beta substrate, and both the full-length protein and a C-terminal fragment of GSKIP can block phosphorylation of primed and nonprimed substrates in different fashions. Similar to Axin GID(381-405) and FRATtide, synthesized GSKIPtide is also shown to compete with and/or block the phosphorylation of Axin and beta-catenin by GSK3beta. Furthermore, our data indicate that overexpression of GSKIP induces beta-catenin accumulation in the cytoplasm and nucleus as visualized by immunofluorescence. A functional assay also demonstrates that GSKIP-transfected cells have a significant effect on the transactivity of Tcf-4. Collectively, we define GSKIP as a naturally occurring protein that is homologous with the GSK3beta interaction domain of Axin and is able to negatively regulate GSK3beta of the Wnt signaling pathway. 相似文献
8.
Neurotrophin 3 (NT3), a member of the neurotrophin family, antagonizes the proliferative effect of fibroblast growth factor 2 (FGF2) on cortical precursors. However, the mechanism by which NT3 inhibits FGF2-induced neural progenitor (NP) cell proliferation is unclear. Here, using an FGF2-dependent rat neurosphere culture system, we found that NT3 inhibits both FGF2-induced neurosphere growth and bromodeoxyuridine (BrdU) incorporation in a dose-dependent manner. U0126, a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, both inhibited FGF2-induced BrdU incorporation, suggesting that the extracellular signal-regulated kinase1/2 (ERK1/2) and PI3K pathways are required for FGF2-induced NP cell proliferation. NT3 significantly inhibited FGF2-induced phosphorylation of Akt and glycogen synthase kinase 3beta (GSK3beta), a downstream kinase of Akt, whereas phosphorylation of ERK1/2 was unaffected. The inhibitory effect of NT3 on FGF2-induced NP cell proliferation was abolished by LY294002, and treatment with SB216763, a specific GSK3 inhibitor, antagonized the NT3 effect, rescuing both neurosphere growth and BrdU incorporation. Moreover, experiments with anti-NT3 antibody revealed that endogenous NT3 also plays a role in inhibiting FGF2-induced NP cell proliferation, and that anti-NT3 antibody enhanced phospho-Akt and phospho-GSK3beta levels in the presence of FGF2. These findings indicate that FGF2-induced NP cell proliferation is inhibited by NT3 via the PI3K/GSK3 pathway. 相似文献
9.
Jonathan E Draffin Carla SnchezCastillo Alba FernndezRodrigo Xavier SnchezSez Jesús vila Florence F Wagner Jos A Esteban 《The EMBO journal》2021,40(2)
Glycogen synthase kinase‐3 (GSK3) is an important signalling protein in the brain and modulates different forms of synaptic plasticity. Neuronal functions of GSK3 are typically attributed to one of its two isoforms, GSK3β, simply because of its prevalent expression in the brain. Consequently, the importance of isoform‐specific functions of GSK3 in synaptic plasticity has not been fully explored. We now directly address this question for NMDA receptor‐dependent long‐term depression (LTD) in the hippocampus. Here, we specifically target the GSK3 isoforms with shRNA knock‐down in mouse hippocampus and with novel isoform‐selective drugs to dissect their roles in LTD. Using electrophysiological and live imaging approaches, we find that GSK3α, but not GSK3β, is required for LTD. The specific engagement of GSK3α occurs via its transient anchoring in dendritic spines during LTD induction. We find that the major GSK3 substrate, the microtubule‐binding protein tau, is required for this spine anchoring of GSK3α and mediates GSK3α‐induced LTD. These results link GSK3α and tau in a common mechanism for synaptic depression and rule out a major role for GSK3β in this process. 相似文献
10.
The GSK3 beta signaling cascade and neurodegenerative disease 总被引:17,自引:0,他引:17
Biochemical signaling pathways are known to have a critical role in neuronal development and function. A growing body of evidence is accumulating to suggest that signaling pathways also underlie neurodegeneration and neurodegenerative disease. One pathway with a prominent role in neurodegenerative disease is the signaling pathway in which the enzyme glycogen synthase kinase 3 (GSK3) is a key component. In vitro and in vivo evidence point to a key role for GSK3 in promoting neurodegeneration and in Alzheimer's disease plaque and neurofibrillary tangle formation. How GSK3 acts in this regard is still open to debate, but it may involve both extracellular and nuclear apoptotic activities. 相似文献
11.
LTP and LTD: an embarrassment of riches 总被引:62,自引:0,他引:62
LTP and LTD, the long-term potentiation and depression of excitatory synaptic transmission, are widespread phenomena expressed at possibly every excitatory synapse in the mammalian brain. It is now clear that "LTP" and "LTD" are not unitary phenomena. Their mechanisms vary depending on the synapses and circuits in which they operate. Here we review those forms of LTP and LTD for which mechanisms have been most firmly established. Examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function. 相似文献
12.
A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. 总被引:9,自引:0,他引:9
The Axin-dependent phosphorylation of beta-catenin catalysed by glycogen synthase kinase-3 (GSK3) is inhibited during embryogenesis. This protects beta-catenin against ubiquitin-dependent proteolysis, leading to its accumulation in the nucleus, where it controls the expression of genes important for development. Frequently rearranged in advanced T-cell lymphomas 1 (FRAT1) is a mammalian homologue of a GSK3-binding protein (GBP), which appears to play a key role in the correct establishment of the dorsal-ventral axis in Xenopus laevis. Here, we demonstrate that FRATtide (a peptide corresponding to residues 188-226 of FRAT1) binds to GSK3 and prevents GSK3 from interacting with Axin. FRATtide also blocks the GSK3-catalysed phosphorylation of Axin and beta-catenin, suggesting a potential mechanism by which GBP could trigger axis formation. In contrast, FRATtide does not suppress GSK3 activity towards other substrates, such as glycogen synthase and eIF2B, whose phosphorylation is independent of Axin but dependent on a 'priming' phosphorylation. This may explain how the essential cellular functions of GSK3 can continue, despite the suppression of beta-catenin phosphorylation. 相似文献
13.
Acute treatment with kainate 30 mg/kg (KA) produced behavioral alterations and reactive gliosis. However, it did not produce major death of mouse hippocampal neurons, indicating that concentrations were not cytotoxic. KA caused rapid and temporal Erk phosphorylation (at 6h) and Akt dephosphorylation (1-3 days). Concomitantly, the activation of GSK3beta was increased 1-3 days after KA. After 7 days, a reduction in GSK3beta activation was observed. Caspase-3 activity increased, but to a lesser extent than calpain activation (measured by fluorimetry and calpain-cleaved alpha-spectrin). As calpain is involved in cdk5 activation, and cdk5 is related to GSK3beta, the cdk5/p25 pathway was examined. Results showed that the p25/p35 ratio in KA-injected mice for 3 days was 73.6% higher than control levels. However, no changes in cdk5 expression were detected. Both Western blot and immunohistochemistry against p-Tau(Thr(231)) indicated an increase at this phosphorylated site of tau protein. Indeed an increase in p-Tau(Ser(199)) and p-Tau(Ser(396)) was observed by Western blot. Our results demonstrate that tau hyperphosphorylation, induced by KA, is due to an increase in GSK3beta/cdk5 activity in combination with an inactivation of Akt. This indicates that the calpain/cdk5 pathway for tau phosphorylation has a potential role in delayed apoptotic death evoked by excitotoxicity. Moreover, the subsequent activation of caspase and calpain proteases leads to dephosphorylation of tau, thus increasing microtubular destructuration. Taken together, our results provide new insights in the activation of several kinase-pathways implicated in cytoskeletal alterations that are a common feature of neurodegenerative diseases. 相似文献
14.
Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine kinase.It is particularly abundant in the developing central nervous system (CNS).Since GSK3β has diverse substrates ranging fr... 相似文献
15.
Mora-Santos M Limón-Mortés MC Giráldez S Herrero-Ruiz J Sáez C Japón MÁ Tortolero M Romero F 《The Journal of biological chemistry》2011,286(34):30047-30056
PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers. 相似文献
16.
Besides its role in terminating acetylcholine-mediated neurotransmission, acetylcholinesterase (AChE) is found to be expressed and participate in the process of apoptosis in various cell types. However, the mechanisms underlying AChE up-regulation in neuronal cells remain elusive. Herein we demonstrated that glycogen synthase kinase-3β (GSK3β) mediates induced AChE-S expression during apoptosis. In this study, A23187 and thapsigargin (TG) were employed to induce apoptosis in neuroendocrine PC12 cells. The results showed that exposure of PC12 cells to A23187 and TG up-regulated AChE activity significantly. The same treatment also led to activation of GSK3β. Two different inhibitors of GSK3β (lithium and GSK3β-specific inhibitor VIII) could block A23187- or TG-induced up-regulation of AChE activity, AChE-S mRNA level and protein expression. However, lithium could not inhibit the induction of AChE-R mRNA and protein under similar conditions. Taken together, our results show that GSK3β is specifically involved in the induction of AChE-S expression in PC12 cells during apoptosis. 相似文献
17.
Plasticity of NMDA receptor-mediated synaptic transmission was studied in the CA1 region of the hippocampus utilising whole cell patch-clamp recording techniques. LTP was associated with a decrease in CV whereas LTD was accompanied by an increase in CV and a decrease in Pr. These data are consistent with LTP and LTD being an opposite expression of the same fundamental process. 相似文献
18.
Uemura K Kuzuya A Shimozono Y Aoyagi N Ando K Shimohama S Kinoshita A 《The Journal of biological chemistry》2007,282(21):15823-15832
Presenilin 1, a causative gene product of familial Alzheimer disease, has been reported to be localized mainly in the endoplasmic reticulum and Golgi membranes. However, endogenous Presenilin 1 also localizes at the plasma membrane as a biologically active molecule. Presenilin 1 interacts with N-cadherin/beta-catenin to form a trimeric complex at the synaptic site through its loop domain, whose serine residues (serine 353 and 357) can be phosphorylated by glycogen synthase kinase 3beta. Here, we demonstrate that cell-surface expression of Presenilin 1/gamma-secretase is enhanced by N-cadherin-based cell-cell contact. Physical interaction between Presenilin 1 and N-cadherin/beta-catenin plays an important role in this process. Glycogen synthase kinase 3beta-mediated phosphorylation of Presenilin 1 reduces its binding to N-cadherin, thereby down-regulating its cell-surface expression. Moreover, reduction of the Presenilin 1.N-cadherin.beta-catenin complex formation leads to an impaired activation of contact-mediated phosphatidylinositol 3-kinase/Akt cell survival signaling. Furthermore, phosphorylation of Presenilin 1 hinders epsilon-cleavage of N-cadherin, whereas epsilon-cleavage of APP remained unchanged. This is the first report that clarifies the regulatory mechanism of Presenilin 1/gamma-secretase with respect to its subcellular distribution and its differential substrate cleavage. Because the cleavage of various membrane proteins by Presenilin 1/gamma-cleavage is involved in cellular signaling, glycogen synthase kinase 3beta-mediated phosphorylation of Presenilin 1 should be deeply associated with signaling functions. Our findings indicate that the abnormal activation of glycogen synthase kinase 3beta can reduce neuronal viability and synaptic plasticity via modulating Presenilin 1/N-cadherin/beta-catenin interaction and thus have important implications in the pathophysiology of Alzheimer disease. 相似文献
19.
Glycogen synthase kinase 3 (GSK3), a key component of the insulin and wnt signaling pathways, is unusual, as it is constitutively active and is inhibited in response to upstream signals. Kinase activity is thought to be increased by intramolecular phosphorylation of a tyrosine in the activation loop (Y216 in GSK3beta), whose timing and mechanism is undefined. We show that GSK3beta autophosphorylates Y216 as a chaperone-dependent transitional intermediate possessing intramolecular tyrosine kinase activity and displaying different sensitivity to small-molecule inhibitors compared to mature GSK3beta. After autophosphorylation, mature GSK3beta is then an intermolecular serine/threonine kinase no longer requiring a chaperone. This shows that autoactivating kinases have adopted different molecular mechanisms for autophosphorylation; and for kinases such as GSK3, inhibitors that affect only the transitional intermediate would be missed in conventional drug screens. 相似文献
20.
E ter Haar J T Coll D A Austen H M Hsiao L Swenson J Jain 《Nature structural biology》2001,8(7):593-596
GSK3beta was identified as the kinase that phosphorylates glycogen synthase but is now known to be involved in multiple signaling pathways. GSK3beta prefers prior phosphorylation of its substrates. We present the structure of unphosphorylated GSK3beta at 2.7 A. The orientation of the two domains and positioning of the activation loop of GSK3beta are similar to those observed in activated kinases. A phosphate ion held by Arg 96, Arg 180 and Lys 205 occupies the same position as the phosphate group of the phosphothreonine in activated p38gamma, CDK2 or ERK2. A loop from a neighboring molecule in the crystal occupies a portion of the substrate binding groove. The structure explains the unique primed phosphorylation mechanism of GSK3beta and how GSK3beta relies on a phosphoserine in the substrate for the alignment of the beta- and alpha-helical domains. 相似文献