共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents 总被引:7,自引:7,他引:7 下载免费PDF全文
《The Journal of cell biology》1990,111(6):2283-2294
Bifunctional cross-linking reagents were used to probe the protein environment in the ER membrane of the signal sequence receptor (SSR), a 24-kD integral membrane glycoprotein (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328:830-833). The proximity of several polypeptides was demonstrated. A 22-kD glycoprotein was identified tightly bound to the 34-kD SSR even after membrane solubilization. The 34-kD polypeptide, now termed alpha SSR, and the 22-kD polypeptide, the beta SSR, represent a heterodimer. We report on the sequence of the beta SSR, its membrane topology, and on the mechanism of its integration into the membrane. Cross-linking also produced dimers of the alpha-subunit of the SSR indicating that oligomers of the SSR exist in the ER membrane. Various bifunctional cross-linking reagents were used to study the relation to ER membrane proteins of nascent chains of preprolactin and beta-lactamase at different stages of their translocation through the membrane. The predominant cross-linked products obtained in high yields contained the alpha SSR, indicating in conjunction with previous results that it is a major membrane protein in the neighborhood of translocating nascent chains of secretory proteins. The results support the existence of a translocon, a translocation complex involving the SSR, which constitutes the specific site of protein translocation across the ER membrane. 相似文献
3.
Protein translocation across the endoplasmic reticulum membrane: identification by photocross-linking of a 39-kD integral membrane glycoprotein as part of a putative translocation tunnel 总被引:14,自引:13,他引:14 下载免费PDF全文
The molecular environment of secretory proteins during translocation across the ER membrane was examined by photocross-linking. Nascent preprolactin chains of various lengths, synthesized by in vitro translation of truncated messenger RNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes, were used to position photoreactive probes at various locations within the membrane. Upon photolysis, each nascent chain species was cross-linked to an integral membrane glycoprotein with a deduced mass of 39 kD (mp39) via photoreactive lysines located in either the signal sequence or the mature prolactin sequence. Thus, different portions of the nascent preprolactin chain are in close proximity to the same membrane protein during the course of translocation, and mp39 therefore appears to be part of the translocon, the specific site of protein translocation across the ER membrane. The similarity of the molecular and cross-linking properties of mp39 and the glyco-protein previously identified as a signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328: 830-833) suggests that these two proteins may be identical. Our data indicate, however, that mp39 does not (or not only) function as a signal sequence receptor, but rather may be part of a putative translocation tunnel. 相似文献
4.
Misfolded secretory proteins are transported across the endoplasmic reticulum (ER) membrane into the cytosol for degradation by proteasomes. A large fraction of proteasomes in a cell is associated with the ER membrane. We show here that binding of proteasomes to ER membranes is salt sensitive, ATP dependent, and mediated by the 19S regulatory particle. The base of the 19S particle, which contains six AAA-ATPases, binds to microsomal membranes with high affinity, whereas the 19S lid complex binds weakly. We demonstrate that ribosomes and proteasomes compete for binding to the ER membrane and have similar affinities for their receptor. Ribosomes bind to the protein conducting channel formed by the Sec61 complex in the ER membrane. We co-precipitated subunits of the Sec61 complex with ER-associated proteasome 19S particles, and found that proteoliposomes containing only the Sec61 complex retained proteasome binding activity. Collectively, our data suggest that the Sec61 channel is a principal proteasome receptor in the ER membrane. 相似文献
5.
Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. 总被引:42,自引:17,他引:42 下载免费PDF全文
C J Stirling J Rothblatt M Hosobuchi R Deshaies R Schekman 《Molecular biology of the cell》1992,3(2):129-142
Yeast mutants defective in the translocation of soluble secretory proteins into the lumen of the endoplasmic reticulum (sec61, sec62, sec63) are not impaired in the assembly and glycosylation of the type II membrane protein dipeptidylaminopeptidase B (DPAPB) or of a chimeric membrane protein consisting of the multiple membrane-spanning domain of yeast hydroxymethylglutaryl CoA reductase (HMG1) fused to yeast histidinol dehydrogenase (HIS4C). This chimera is assembled in wild-type or mutant cells such that the His4c protein is oriented to the ER lumen and thus is not available for conversion of cytosolic histidinol to histidine. Cells harboring the chimera have been used to select new translocation defective sec mutants. Temperature-sensitive lethal mutations defining two complementation groups have been isolated: a new allele of sec61 and a single isolate of a new gene sec65. The new isolates are defective in the assembly of DPAPB, as well as the secretory protein alpha-factor precursor. Thus, the chimeric membrane protein allows the selection of more restrictive sec mutations rather than defining genes that are required only for membrane protein assembly. The SEC61 gene was cloned, sequenced, and used to raise polyclonal antiserum that detected the Sec61 protein. The gene encodes a 53-kDa protein with five to eight potential membrane-spanning domains, and Sec61p antiserum detects an integral protein localized to the endoplasmic reticulum membrane. Sec61p appears to play a crucial role in the insertion of secretory and membrane polypeptides into the endoplasmic reticulum. 相似文献
6.
Several approaches are currently being taken to elucidate the mechanisms and the molecular components responsible for protein targeting to and translocation across the membrane of the endoplasmic reticulum. Two experimental systems dominate the field: a biochemical system derived from mammalian exocrine pancreas, and a combined genetic and biochemical system employing the yeast, Saccharomyces cerevisiae. Results obtained in each of these systems have contributed novel, mostly non-overlapping information. Recently, much effort in the field has been dedicated to identifying membrane proteins that comprise the translocon. Membrane proteins involved in translocation have been identified both in the mammalian system, using a combination of crosslinking and reconstitution approaches, and in S. cerevisiae, by selecting for mutants in the translocation pathway. None of the membrane proteins isolated, however, appears to be homologous between the two experimental systems. In the case of the signal recognition particle, the two systems have converged, which has led to a better understanding of how proteins are targeted to the endoplasmic reticulum membrane. 相似文献
7.
Glycosylation is essential for translocation of carp retinol-binding protein across the endoplasmic reticulum membrane 总被引:1,自引:0,他引:1
Devirgiliis C Gaetani S Apreda M Bellovino D 《Biochemical and biophysical research communications》2005,332(2):504-511
Retinoid transport is well characterized in many vertebrates, while it is still largely unexplored in fish. To study the transport and utilization of vitamin A in these organisms, we have isolated from a carp liver cDNA library retinol-binding protein, its plasma carrier. The primary structure of carp retinol-binding protein is very conserved, but presents unique features compared to those of the correspondent proteins isolated and characterized so far in other species: it has an uncleavable signal peptide and two N-glycosylation sites in the NH(2)-terminal region of the protein that are glycosylated in vivo. In this paper, we have investigated the function of the carbohydrate chains, by constructing three mutants deprived of the first, the second or both carbohydrates. The results of transient transfection of wild type and mutant retinol-binding protein in Cos cells followed by Western blotting and immunofluorescence analysis have shown that the absence of both carbohydrate moieties blocks secretion, while the presence of one carbohydrate group leads to an inefficient secretion. Experiments of carp RBP mRNA in vitro translation in a reticulocyte cell-free system in the presence of microsomes have demonstrated that N-glycosylation is necessary for efficient translocation across the endoplasmic reticulum membranes. Moreover, when Cos cells were transiently transfected with wild type and mutant retinol-binding protein (aa 1-67)-green fluorescent protein fusion constructs and semi-permeabilized with streptolysin O, immunofluorescence analysis with anti-green fluorescent protein antibody revealed that the double mutant is exposed to the cytosol, thus confirming the importance of glycan moieties in the translocation process. 相似文献
8.
Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane 下载免费PDF全文
We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC-SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC-SRP complexes can overcome the competition by nontranslating ribosomes. 相似文献
9.
10.
Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. 总被引:27,自引:0,他引:27
The membrane glycoprotein of vesicular stomatitis virus (VSV), synthesized in vitro in the presence of pancreatic microsomes, is glycosylated in two distinct steps while its polypeptide chain is nascent (Rothman and Lodish, 1977). We show here that unglycosylated glycoprotein, which accumulates in vivo following treatment of cells with tunicamycin and in vitro as a result of translation in the presence of detergent-treated microsomal membranes, is inserted normally as a transmembrane protein. This means that glycosylation, while normally occurring concurrently with insertion, is not required for insertion. Our experiments also show that the two steps in glycosylation correspond to the sequential transfer of preformed “core” oligosaccharides of typical structure to two Asn residues in the growing chain. The accumulation of unglycosylated glycoprotein in vitro is due to the fact that the completed transmembrane polypeptide cannot be glycosylated. The detergent treatment of microsomes impairs their rate of glycosylation so that chains are frequently completed before they can be glycosylated. This provides a simple explanation for certain types of heterogeneity often found in glycoproteins. We believe that the detergent treatment procedure results in the solubilization of the microsomal membrane followed by reconstitution. This is a prerequisite for the eventual purification of the membrane proteins and lipids involved in insertion and glycosylation of this model membrane protein. 相似文献
11.
Köchl R Alken M Rutz C Krause G Oksche A Rosenthal W Schülein R 《The Journal of biological chemistry》2002,277(18):16131-16138
The initial step of the intracellular transport of G protein-coupled receptors, their insertion into the membrane of the endoplasmic reticulum, follows one of two different pathways. Whereas one group uses the first transmembrane domain of the mature receptor as an uncleaved signal anchor sequence for this process, a second group possesses additional cleavable signal peptides. The reason this second subset requires the additional signal peptide is not known. Here we have assessed the functional significance of the signal peptide of the endothelin B (ET(B)) receptor in transiently transfected COS.M6 cells. A green fluorescent protein-tagged ET(B) receptor mutant lacking the signal peptide was nonfunctional and retained in the endoplasmic reticulum, suggesting that it has a folding defect. To determine the defect in more detail, ET(B) receptor fragments containing the N-terminal tail, first transmembrane domain, and first cytoplasmic loop were constructed. We assessed N tail translocation across the endoplasmic reticulum membrane in the presence and absence of a signal peptide and show that the signal peptide is necessary for N tail translocation. We postulate that signal peptides are necessary for those G protein-coupled receptors for which post-translational translocation of the N terminus is impaired or blocked by the presence of stably folded domains. 相似文献
12.
13.
The endoplasmic reticulum of most cell types mainly consists of an extensive network of narrow sheets and tubules. It is well known that an excessive increase of the cytosolic Ca2+ concentration induces a slow but extensive swelling of the endoplasmic reticulum into a vesicular morphology. We observed that a similar extensive transition to a vesicular morphology may also occur independently of a change of cytosolic Ca2+ and that the change may occur at a time scale of seconds. Exposure of various types of cultured cells to saponin selectively permeabilized the plasma membrane and resulted in a rapid swelling of the endoplasmic reticulum even before a loss of permeability barrier was detectable with a low-molecular mass dye. The structural alteration was reversible provided the exposure to saponin was not too long. Mechanical damage of the plasma membrane resulted in a large-scale transition of the endoplasmic reticulum from a tubular to a vesicular morphology within seconds, also in Ca2+-depleted cells. The rapid onset of the phenomenon suggests that it could perform a physiological function. Various mechanisms are discussed whereby endoplasmic reticulum vesicularization could assist in protection against cytosolic Ca2+ overload in cellular stress situations like plasma membrane injury. 相似文献
14.
Mutants in three novel complementation groups inhibit membrane protein insertion into and soluble protein translocation across the endoplasmic reticulum membrane of Saccharomyces cerevisiae 总被引:2,自引:2,他引:2 下载免费PDF全文
We have isolated mutants that inhibit membrane protein insertion into the ER membrane of Saccharomyces cerevisiae. The mutants were contained in three complementation groups, which we have named SEC70, SEC71, and SEC72. The mutants also inhibited the translocation of soluble proteins into the lumen of the ER, indicating that they pleiotropically affect protein transport across and insertion into the ER membrane. Surprisingly, the mutants inhibited the translocation and insertion of different proteins to drastically different degrees. We have also shown that mutations in SEC61 and SEC63, which were previously isolated as mutants inhibiting the translocation of soluble proteins, also affect the insertion of membrane proteins into the ER. Taken together our data indicate that the process of protein translocation across the ER membrane involves a much larger number of gene products than previously appreciated. Moreover, different translocation substrates appear to have different requirements for components of the cellular targeting and translocation apparatus. 相似文献
15.
Although most of the rat-liver AP (apurinic/apyrimidinic) endonuclease is in chromatin, some activity is found in microsomes. A quantitative assay of the microsomal AP endonuclease is described. The enzyme is a peripheral membrane protein that is located on the outside surface of microsomes. All the binding sites on the microsomes appear to have the same affinity for the AP endonuclease, suggesting the presence of receptors for the enzyme. The AP endonuclease is displaced from its membrane attachment by submicromolar concentrations of the karyophilic signal of SV-40 T antigen. The AP endonuclease receptors are likely to be on the cytosolic side of the endoplasmic reticulum. It is suggested that binding of the protein to these receptors might be the first step of the transport mechanism that enables the AP endonuclease to penetrate into the nucleus. The same mechanism utilizing the same receptors might be used by other karyophilic proteins, including SV-40 T antigen. 相似文献
16.
Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle 总被引:9,自引:7,他引:9 下载免费PDF全文
《The Journal of cell biology》1982,95(2):463-469
Thin-section and critical-point-dried fracture-labeled preparations are used to determine the distribution and partition of glycophorin- associated wheat germ agglutinin (WGA) binding sites over protoplasmic and exoplasmic faces of freeze-fractured human erythrocyte membranes. Most wheat germ agglutinin binding sites are found over exoplasmic faces. Label is sparse over the protoplasmic faces. These results contrast with previous observations of the partition of band 3 component where biochemical analysis and fracture-label of concanavalin A (Con A) binding sites show preferential partition of this transmembrane protein with the protoplasmic face. Presence of characteristic proportions of WGA and Con A binding sites over each fracture face is interpreted to indicate the operation of a stochastic process during freeze-fracture. This process appears modulated by the relative expression of each transmembrane protein at either surface as well as by their association to components of the erythrocyte membrane skeleton. 相似文献
17.
Mathematical modeling of the effects of the signal recognition particle on translation and translocation of proteins across the endoplasmic reticulum membrane 总被引:10,自引:0,他引:10
The kinetics of the signal recognition particle(SRP)-mediated process of protein translocation across the endoplasmic reticulum membrane was studied by mathematical modeling and complementary experiments. The following results were obtained. (1) A model according to which SRP directs the ribosome, rather than the mRNA, to the membrane is supported by experiments designed to discriminate between the two alternatives. (2) This model describes both steady-state and synchronized translation experiments and makes a number of predictions. (3) The interaction between a nascent protein and SRP may be described by two parameters: (i) a binding constant which can be attributed to the structure of the signal peptide, and (ii) the size of the "SRP-window", i.e. the distance between the first and the last site on the polypeptide chain that can interact with SRP. For preprolactin a binding constant of 1 to 2.5 nmol-1l was estimated. Modeling of the synchronized synthesis of ovalbumin indicates that it has a much weaker binding constant than preprolactin (approximately 0.25 nmol-1l) although we cannot exclude the possibility that the SRP-window may be also smaller. (4) A better understanding of the molecular effects of SRP on translation and translocation through the rough endoplasmic reticulum membrane has been achieved. Inhibition of the steady-state rate of translation by SRP requires a stoichiometric interaction of SRP with ribosomes carrying nascent polypeptide chains and will occur only when ribosomes are piled up back to the initiation site. Translocation, on the other hand, requires only the catalytic action of SRP and is determined by the local concentration of protein-synthesizing ribosomes accumulated at the site(s) of SRP interaction. As a consequence, translational inhibition by SRP may sometimes fail to occur, depending either on the type of protein or on experimental conditions, such as a high mRNA concentration, even if translocation can be demonstrated. (5) A rough extrapolation to the conditions in vivo indicates that all synthesized polypeptide chains destined for translocation across or integration into the endoplasmic reticulum membrane are indeed quantitatively translocated and that no translational inhibition occurs. 相似文献
18.
Yabal M Brambillasca S Soffientini P Pedrazzini E Borgese N Makarow M 《The Journal of biological chemistry》2003,278(5):3489-3496
C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation. 相似文献
19.
De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated 下载免费PDF全文
The plant endoplasmic reticulum (ER) contains functionally distinct subdomains at which cargo molecules are packed into transport carriers. To study these ER export sites (ERES), we used tobacco (Nicotiana tabacum) leaf epidermis as a model system and tested whether increased cargo dosage leads to their de novo formation. We have followed the subcellular distribution of the known ERES marker based on a yellow fluorescent protein (YFP) fusion of the Sec24 COPII coat component (YFP-Sec24), which, differently from the previously described ERES marker, tobacco Sar1-YFP, is visibly recruited at ERES in both the presence and absence of overexpressed membrane cargo. This allowed us to quantify variation in the ERES number and in the recruitment of Sec24 to ERES upon expression of cargo. We show that increased synthesis of membrane cargo leads to an increase in the number of ERES and induces the recruitment of Sec24 to these ER subdomains. Soluble proteins that are passively secreted were found to leave the ER with no apparent up-regulation of either the ERES number or the COPII marker, showing that bulk flow transport has spare capacity in vivo. However, de novo ERES formation, as well as increased recruitment of Sec24 to ERES, was found to be dependent on the presence of the diacidic ER export motif in the cytosolic domain of the membrane cargo. Our data suggest that the plant ER can adapt to a sudden increase in membrane cargo-stimulated secretory activity by signal-mediated recruitment of COPII machinery onto existing ERES, accompanied by de novo generation of new ERES. 相似文献
20.
The beta subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the alpha subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane 总被引:2,自引:0,他引:2 下载免费PDF全文
《The Journal of cell biology》1995,128(3):273-282
The signal recognition particle receptor (SR) is required for the cotranslational targeting of both secretory and membrane proteins to the endoplasmic reticulum (ER) membrane. During targeting, the SR interacts with the signal recognition particle (SRP) which is bound to the signal sequence of the nascent protein chain. This interaction catalyzes the GTP-dependent transfer of the nascent chain from SRP to the protein translocation apparatus in the ER membrane. The SR is a heterodimeric protein comprised of a 69-kD subunit (SR alpha) and a 30- kD subunit (SR beta) which are associated with the ER membrane in an unknown manner. SR alpha and the 54-kD subunits of SRP (SRP54) each contain related GTPase domains which are required for SR and SRP function. Molecular cloning and sequencing of a cDNA encoding SR beta revealed that SR beta is a transmembrane protein and, like SR alpha and SRP54, is a member of the GTPase superfamily. Although SR beta defines its own GTPase subfamily, it is distantly related to ARF and Sar1. Using UV cross-linking, we confirm that SR beta binds GTP specifically. Proteolytic digestion experiments show that SR alpha is required for the interaction of SRP with SR. SR alpha appears to be peripherally associated with the ER membrane, and we suggest that SR beta, as an integral membrane protein, mediates the membrane association of SR alpha. The discovery of its guanine nucleotide-binding domain, however, makes it likely that its role is more complex than that of a passive anchor for SR alpha. These findings suggest that a cascade of three directly interacting GTPases functions during protein targeting to the ER membrane. 相似文献