首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported the successful adaptation of human hookworm Necator americanus in the golden hamster, Mesocricetus auratus. This animal model was used to test a battery of hookworm (N. americanus and Ancylostoma caninum) recombinant antigens as potential vaccine antigens. Hamsters immunized a leading vaccine candidate N. americanus-Ancylostoma secreted protein 2 (Na-ASP-2) and challenged with N. americanus infective larvae (L3), resulted in 30-46.2% worm reduction over the course of three vaccine trials, relative to adjuvant controls. In addition, significant reduction of worm burdens was also observed in the hamsters immunized with adult hookworm antigens A. caninum aspartic protease 1 (Ac-APR-1); A. caninum-glutathione-S transferase 1 (Ac-GST-1) and Necator cysteine proteases 2 (Na-CP-2) (44.4%, 50.6%, and 29.3%, respectively). Our data on the worm burden reductions afforded by these hookworm antigens approximate the level of protection reported previously from dogs challenged with A. caninum L3, and provide additional evidence to support these hookworm antigens as vaccine candidates for human hookworm infection. The hamster model of N. americanus provides useful information for the selection of antigens to be tested in downstream vaccine development.  相似文献   

2.
3.
Neospora hughesi is a recently described apicomplexan parasite that has been associated with several cases of equine protozoal myeloencephalitis. The biology of this new parasite is just beginning to be defined. Towards this understanding, we report important differences between the nucleotide and deduced amino acid sequences of the dense granule proteins GRA6 and GRA7 of N. hughesi and Neospora caninum. This information can be used to differentiate the two species and contribute to further understanding of the prevalence and biology of N. hughesi. The newly defined proteins of N. hughesi are referred to as NhGRA6 and NhGRA7 in keeping with the protocol for naming homologous proteins of the Apicomplexa. Genes of the two dense granule proteins of N. hughesi (isolate Nh-A1) and four different isolates of N. caninum were isolated via PCR and their DNA sequences were determined. Computer analysis indicated that the two gene sequences were identical among all four N. caninum isolates. However, the gene for NhGRA6 was found to be 96 nucleotides longer at the 3' end than that of NcGRA6, resulting in a protein product that is 32 amino acids larger than NcGRA6. Two tandem repeat sequences were identified at the 3' end of the NhGRA6 gene. These repeat sequences contributed to the lengthening of the carboxy terminus of NhGRA6 in comparison with that of NcGRA6. The larger size of NhGRA6 was further confirmed by Western blot analysis in which NcGRA6 monospecific antibodies recognised a protein of approximately 42 kDa in N. hughesi whole tachyzoite preparation but a protein of 37 kDa in N. caninum whole tachyzoite preparation. Analysis of GRA7 gene sequences indicated a 6 and 14.8% difference at nucleotide and amino acid sequence level, respectively, between NcGRA7 and NhGRA7. Despite the same number of residues in the deduced amino acid sequences of all the GRA7 proteins, Western blot analysis indicated a difference in the migration pattern of NhGRA7 in comparison with NcGRA7. Results of our study indicate that diagnostic tests based on differences in dense granule sequences and antigenicity may have potential to differentiate between N. hughesi and N. caninum. Such diagnostic tests would be valuable tools to aid in our understanding of the epidemiology of these parasites. Additionally, dense granule proteins are immunogenic and they may have potential as use in recombinant vaccines against neosporosis.  相似文献   

4.
Hookworms of humans are blood-feeding parasitic nematodes of major socio-economic significance in a wide range of countries. They cause a neglected tropical disease (NTD) called "hookworm disease" (=necatoriasis and/or ancylostomiasis). Necator americanus is the most widely distributed hookworm of humans and is a leading cause of iron deficiency anaemia, which can cause physical and mental retardation and deaths in children as well as adverse maternal-foetal outcomes. Currently, there is a significant focus on the development of new approaches for the prevention and control of hookworms in humans. Technological advances are underpinning the discovery of drug and vaccine targets through insights into the molecular biology and genomics of these parasites and their relationship with the human host. In spite of the widespread socio-economic impacts of human necatoriasis, molecular datasets for N. americanus are scant, limiting progress in molecular research. The present article explores all currently available EST datasets for adult and larval stages of N. americanus using a semi-automated bioinformatic pipeline. In the current repertoire of molecules now available, some have been or are being considered as candidate vaccines against N. americanus. Among others, the most abundant sets of molecules relate to the pathogenesis-related protein (PRP) superfamily, comprising various members, such as the Ancylostoma-secreted or activation-associated proteins (ASPs) and the kunitz-type proteins, both of which are inferred to play key roles in the interplay between N. americanus and the human host. Understanding the molecular biology of these and other novel molecules discovered could have important implications for finding new ways of disrupting the pathways that they are involved in, and should facilitate the identification of new drug and vaccine targets. Also, the bioinformatic prediction of the essentiality of genes and gene products as well as molecular network connectivity of nematode-specific genes, together with sequencing by 454 technology, are likely to assist in the genomic discovery efforts in the very near future, to also underpin fundamental, molecular research of hookworms.  相似文献   

5.
Prospects for vaccines of helminth parasites of grazing ruminants   总被引:1,自引:0,他引:1  
Defined molecular vaccines for several ruminant heliminth parasites are being pursued at several different laboratories. The most fruitful sources of antigen have been oncosphere surface proteins, excretory/secretory products and integral gut membrane proteins. Nematode gut membrane proteins are unconventional in that they do not come into contact with the host immune response during infection, a feature which brings advantages as well as disadvantages. The genes encoding several of the protective antigens have been cloned, but only in the case of the oncosphere surface proteins has substantial protection been reported with recombinant versions. In addition to the problem of identifying suitable expression systems, issues such as choice of adjuvant and/or the possible use of a vaccine vector have to be solved before molecular vaccines for the economically important helminths can be launched. Of the latter, it seems that vaccines for Haemonchus and Fasciola are the brightest prospects.  相似文献   

6.
The Apicomplexa are a diverse group of parasitic protozoa with very ancient phylogenetic roots. Consistent with their phylogeny, the extant species share conserved proteins and traits that were found in their apicomplexan progenitor, but at the same time they have diverged to occupy different biological niches (e.g. host-range and cell type). Characterisation of gene and protein diversity is important for distinguishing between related parasites, for determining their phylogeny, and for providing insight into factors that determine host restriction, cell preference, and virulence. The value of molecular characterisations and comparisons between species is well illustrated by the close phylogenetic relationship between Neospora caninum and Toxoplasma gondii. These two organisms have nearly identical morphology and can cause similar pathology and disease. Consequently, N. caninum has often been incorrectly identified as T. gondii, thus demonstrating the need for studies addressing the molecular and antigenic composition of Neospora. In this review, we describe the major antigenic proteins that have been characterised in N. caninum. These show homology to T. gondii proteins, yet possess unique antigenic characteristics that distinguish them from their homologues and enable their use for specific serological diagnoses and parasite identification.  相似文献   

7.
Genes and genomes of Necator americanus and related hookworms   总被引:1,自引:0,他引:1  
The human hookworms (Necator americanus and Ancylostoma duodenale) infect over one billion people. The phylogenetic relationships of the human hookworms suggest independent acquisition of the human host. The hookworms probably have a haploid chromosome number n = 6, and an XX-XO sex determination mechanism is likely to be used. Genetic and molecular research on hookworms is in its infancy, but several important genes and gene products have already been identified. Of note are cathepsin genes, a family of secreted proteins known as Ancylostoma activation-associated proteins and a family of anticoagulants. The inception of an expressed sequence tag program on the human hookworm, N. americanus, promises to yield many new genes with novel functions in the biology of these important parasites.  相似文献   

8.
Haemonchus contortus is a nematode that infects small ruminants. It releases a variety of molecules, designated excretory/secretory products (ESP), into the host. Although the composition of ESP is largely unknown, it is a source of potential vaccine components because ESP are able to induce up to 90% protection in sheep. We used proteomic tools to analyze ESP proteins and determined the recognition of these individual proteins by hyperimmune sera. Following two-dimensional electrophoresis of ESP, matrix-assisted laser desorption ionization time-of-flight and liquid chromatography-tandem mass spectrometry were used for protein identification. Few sequences of H. contortus have been determined. Therefore, the data base of expressed sequence tags (dbEST) and a data base consisting of contigs from Haemonchus ESTs were also consulted for identification. Approximately 200 individual spots were observed in the two-dimensional gel. Comprehensive proteomics analysis, combined with bioinformatic search tools, identified 107 proteins in 102 spots. The data include known as well as novel proteins such as serine, metallo- and aspartyl proteases, in addition to H. contortus ESP components like Hc24, Hc40, Hc15, and apical gut GA1 proteins. Novel proteins were identified from matches with H. contortus ESTs displaying high similarity with proteins like cyclophilins, nucleoside diphosphate kinase, OV39 antigen, and undescribed homologues of Caenorhabditis elegans. Of special note is the finding of microsomal peptidase H11, a vaccine candidate previously regarded as a "hidden antigen" because it was not found in ESP. Extensive sequence variation is present in the abundant Hc15 proteins. The Hc15 isoforms are differentially recognized by hyperimmune sera, pointing to a possible specific role of Hc15 in the infectious process and/or in immune evasion. This concept and the identification of multiple novel immune-recognized components in ESP should assist future vaccine development strategies.  相似文献   

9.
To identify new vaccine candidates, Eimeria tenella expressed sequence tags (ESTs) from public databases were analysed for secretory molecules with an especially developed automated in silico strategy termed DNAsignalP. A total of 12,187 ESTs were clustered into 2881 contigs followed by a blastx search, which resulted in a significant number of E. tenella contigs with homologies to entries in public databases. Amino acid sequences of appropriate homologous proteins were analysed for the occurrence of an N-terminal signal sequence using the algorithm signalP. The resulting list of 84 entries comprised 51 contigs whose deduced proteins showed homologies to proteins of apicomplexan parasites. Based on function or localisation, we selected candidate proteins classified as (i) secreted proteins of Apicomplexa parasites, (ii) secreted enzymes, and (iii) transport and signalling proteins. To verify our strategy experimentally, we used a functional complementation system in yeast. For five selected candidate proteins we found that these were indeed secreted. Our approach thus represents an efficient method to identify secretory and surface proteins out of EST databases.  相似文献   

10.
Blood-feeding parasites employ a battery of proteolytic enzymes to digest the contents of their bloodmeal. Host haemoglobin is a major substrate for these proteases and, therefore, a driving force in the evolution of parasite-derived proteolytic enzymes. This review will focus on the digestive proteases of the major blood-feeding nematodes - hookworms (Ancylostoma spp. and Necator americanus) and the ruminant parasite, Haemonchus contortus - but also compares and contrasts these proteases with recent findings from schistosomes and malaria parasites. Haematophagous nematodes express proteases of different mechanistic classes in their intestines, many of which have proven or putative roles in degradation of haemoglobin and other proteins involved in nutrition. Moreover, the fine specificity of the relationships between digestive proteases and their substrate proteins provides a new molecular paradigm for understanding host-parasite co-evolution. Numerous laboratories are actively investigating these molecules as antiparasite vaccine targets.  相似文献   

11.
Bovine abortions caused by the apicomplexan parasite Neospora caninum have been responsible for severe economic losses to the cattle industry. Infected cows either experience abortion or transmit the parasite transplacentally at a rate of up to 95%. Neospora caninum vaccines that can prevent vertical transmission and ensure disruption in the life cycle of the parasite greatly aid in the management of neosporosis in the cattle industry. Brucella abortus strain RB51, a commercially available vaccine for bovine brucellosis, can also be used as a vector to express plasmid-encoded proteins from other pathogens. Neospora caninum protective antigens MIC1, MIC3, GRA2, GRA6 and SRS2 were expressed in strain RB51. Female C57BL/6 mice were vaccinated with a recombinant strain RB51 expressing N. caninum antigen or irradiated tachyzoites, boosted 4 weeks later and then bred. Antigen-specific IgG, IFN-gamma and IL-10 were detected in vaccinated pregnant mice. Vaccinated mice were challenged with 5 x 10(6)N. caninum tachyzoites between days 11-13 of pregnancy. Brain tissue was collected from pups 3 weeks after birth and examined for the presence of N. caninum by real-time PCR. The RB51-MIC3, RB51-GRA6, irradiated tachyzoite vaccine, pooled strain RB51-Neospora vaccine, RB51-MIC1 and RB51-SRS2 vaccines elicited approximately 6-38% protection against vertical transmission. However, the differences in parasite burden in brain tissue of pups from the control and vaccinated groups were highly significant for all groups. Thus, B. abortus strain RB51 expressing the specific N. caninum antigens induced substantial protection against vertical transmission of N. caninum in mice.  相似文献   

12.
13.
A cDNA encoding a surface-associated antigen was cloned from an Ancylostoma caninum infective larvae (L(3)) cDNA library by immunoscreening with pooled human immune sera. The sera were obtained from individuals living in an Ancylostoma duodenale hookworm-endemic region of China, who had light intensity infections and high antibody titers against A. caninum L(3). Ancylostoma caninum surface-associated antigen-1 is encoded by an 843 bp mRNA with a predicted open reading frame of 162 amino acids. Recombinant Ancylostoma caninum surface-associated antigen-1 was expressed in Escherichia coli and used to prepare a specific antiserum. A Western blot with anti-Ancylostoma caninum surface-associated antigen-1 specific antiserum showed that native Ancylostoma caninum surface-associated antigen-1 protein is expressed by both L(3) and adult hookworms; RT-PCR confirmed that the mRNA is transcribed in both stages. In adult hookworms, the protein localised to the basal layer of the cuticle and hypodermis of adult worms. Serological analysis determined that recombinant Ancylostoma caninum surface-associated antigen-1 protein is recognised by 61% of human sera from a Necator americanus hookworm endemic area in China, indicating the antigen is immunodominant. Anti-Ancylostoma caninum surface-associated antigen-1 antiserum partially inhibited (46.7%) invasion of hookworm L(3) into dog skin in vitro. Together these results suggest that Ancylostoma caninum surface-associated antigen-1 offers promise as a protective vaccine antigen.  相似文献   

14.
Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against N. caninum infection was evaluated in vitro and in vivo. Two major immunodominant surface antigens (NcSAG1 and NcSRS2) and two dense granule proteins (NcDG1 and NcDG2) of N. caninum tachyzoites were expressed in E. coli, respectively. An in vitro neutralization assay using polyclonal antisera raised against each recombinant antigen showed inhibitory effects on the invasion of N. caninum tachyzoites into host cells. Separate groups of gerbils were immunized with the purified recombinant proteins singly or in combinations and animals were then challenged with N. caninum. Following these experimental challenges, the protective efficacy of each vaccination was determined by assessing animal survival rate. All experimental groups showed protective effects of different degrees against experimental infection. The highest protection efficacy was observed for combined vaccination with NcSRS2 and NcDG1. Our results indicate that combined vaccination with the N. caninum recombinant antigens, NcSRS2 and NcDG1, induces the highest protective effect against N. caninum infection in vitro and in vivo.  相似文献   

15.
Neospora hughesi is a newly recognised parasite that is closely related to Neospora caninum, and is a cause of equine protozoal myeloencephalitis. We have characterised two N. hughesi immunodominant tachyzoite antigens which exhibit antigenic and molecular differences from the homologous tachyzoite antigens on N. caninum. These antigens on N. hughesi are referred to as NhSAG1 and NhSRS2, using the same mnemonics as used for the N. caninum antigens (NcSAG1 and NcSRS2), and are homologous to Toxoplasma gondii surface antigen 1 (SAG1) and SAG1-related sequence 2 (SRS2). The NcSAG1 and NcSRS2 were antigenically conserved in six different N. caninum isolates from cattle and dogs. The two equine-derived Neospora isolates, one designated as N. hughesi, were similar to each other but different from N. caninum. There was 6% difference in amino acid identity between NcSAG1 and NhSAG1, whereas there was a 9% difference when NcSRS2 and NhSRS2 were compared. The polymorphism of these genes and their corresponding proteins provide additional markers which can be used to distinguish N. caninum from N. hughesi.  相似文献   

16.
A unigene set of 1411 contigs was constructed from 2629 redundant maize expressed sequence tags (ESTs) mapped on the maizeDB genetic map. Rice orthologous sequences were identified by blast alignment against the rice genomic sequence. A total of 1046 (74%) maize contigs were associated with their corresponding homologues in the rice genome and 656 (47%) defined as potential orthologous relationships. One hundred and seventeen (8%) maize EST contigs mapped to two distinct loci on the maize genetic map, reflecting the tetraploid nature of the maize genome. Among 492 mono-locus contigs, 344 (484 redundant ESTs) identify collinear blocks between maize chromosomes 2 and 4 and a single rice chromosome, defining six new collinear regions. Fine-scale analysis of collinearity between rice chromosomes 1 and 5 with maize chromosomes 3, 6 and 8 shows the presence of internal rearrangements within collinear regions. Mapping of maize contigs to two distinct loci on the rice sequence identifies five new duplication events in rice. Detailed analysis of a duplication between rice chromosomes 1 and 5 shows that 11% of the annotated genes from the chromosome 1 locus are found duplicated on the chromosome 5 paralogous counterpart, indicating a high degree of re-organisations. The implications of these findings for map-based cloning in collinear regions are discussed.  相似文献   

17.
Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed 'immune mapped protein-1' (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult.  相似文献   

18.
Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q black triangle down A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 degrees C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.  相似文献   

19.
To determine differential gene expression profiles in the venom gland and sac (gland/sac) of a solitary hunting wasp species, Orancistrocerus drewseni Saussure (1857), a subtractive cDNA library was constructed by suppression subtractive hybridization. A total of 498 expressed sequence tags (EST) were clustered and assembled into 205 contigs (94 multiple sequences and 111 singletons). About 65% (134) of the contigs had matched BLASTx hits (E≤10?4). Among these, 115 contigs had similarity to proteins with assigned molecular function in the Gene Ontology database, and most of them (112 contigs, 83%) were homologous to genes from Hymenoptera, particularly to Apis mellifera (98 contigs). The contigs encoding hyaluronidase and phospholipase A2, known to be main components of wasp venoms, were found in high frequencies (27 and 4%, respectively, as judged by the number of ESTs) in the gene ontology category of catalytic activity. Full‐length open reading frames of hyaluronidase and phospholipase A2 were characterized and their abundance in the venom gland/sac was confirmed by quantitative real‐time PCR. Several contigs encoding enzymes, including zinc‐metallopeptidases that are likely involved in the processing and activation of venomous proteins or peptides, were also identified from the library. Discovery of venom gland/sac‐specific genes should promote further studies on biologically active components in the venom of O. drewseni. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号