首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A sensitive rapid method for the simultaneous determination of four major active alkaloids (dehydrocavidine, coptisine, dehydroapocavidine, and tetradehydroscoulerine, in abbreviation thereafter called YHL-I, YHL-II, YHL-III, and YHL-IV, respectively) from a Chinese traditional medicine Corydalis saxicola Bunting. (Yanhuanglian) in rat plasma and urine was established and validated. The assay for these substances in plasma and urine was based on HPLC coupled with tandem mass spectrometry (MS/MS) detection using multiple reaction monitoring mode (MRM) with berberine and clenbuterol as internal standards. The plasma and urine sample were deproteinated by adding methanol prior to liquid chromatography where separation was performed on a Luna column (5 microm, 100 x 2.00 mm) and an Agilent Zorbax SB-C18 guard column (5 microm, 20 x 4 mm). The method was validated with the concentration range 1-1000 ng/mL in plasma and 10-1000 ng/mL in urine for the four test compounds, and the calibration curves were linear with correlation coefficients >0.999. The lowest limits of quantitation for all four substances were 1 ng/mL in 0.1 mL rat plasma and 10 ng/mL in 0.1 mL urine. The intra-assay accuracy and precision in plasma ranged from 88.1 to 115.7% and 1.4 to 10.8%, respectively, while inter-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV ranged from 96.2 to 113.2% and 0.4 to 16.9%, respectively. The intra-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV in rat urine ranged from 96.1 to 112.9% and 1.2 to 8.3%, respectively, while inter-assay accuracy and precision ranged from 95.0 to 106.8% and 2.2 to 10.3%, respectively. The method was further applied to assess pharmacokinetics and urine excretion of the four alkaloids after oral and intravenous administration to rats. Practical utility of this new LC-MS-MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration.  相似文献   

2.
A SPE-HPLC method was developed and validated for the simultaneous determination of flavonols, isoquercitrin (1), hibifolin (2), myricetin (3), quercetin-3'-O-d-glucoside (4) and quercetin (5) in rat plasma and urine after oral administration of the total flavonoids from Abelmoschus manihot (TFA). The astragalin (6) and kaempferol (7) were used as internal standards (IS). Plasma and urine samples were pretreated by solid-phase extraction using Winchem C(18) reversed-phase cartridges. Analysis of the plasma and urinary extract was performed on YMC-Pack ODS-A C(18) and Thermo ODS-2HYEPRSIL C(18) reversed-phase column, respectively and a mobile phase of acetonitrile-0.1% phosphoric acid was employed. HPLC analysis was conducted with different elution gradients. The flow rate was 1.0 mL/min and the detection wavelength was set at 370 nm. Calibration ranges in plasma for flavonols 2-5 were at 0.011-2.220, 0.014-2.856, 0.022-4.320, and 0.028-5.600 microg/mL, respectively. In urine calibration ranges for flavonols 1, 2, 4 and 5 were at 2.00-16.00, 8.56-102.72, 2.70-21.60, and 3.00-24.00 microg/mL, respectively. The RSD of intra- and inter-day was less than 5.40% and 4.89% in plasma, and less than 3.96% and 6.85% in urine for all the analyses. A preliminary experiment to investigate the plasma concentration and urinary excretion of the flavonols after oral administration of TFA to rats demonstrated that the present method was suitable for determining the flavonols in rat plasma and urine.  相似文献   

3.
建立大鼠血浆和脑中Z-槀苯内酯(LIG)浓度测定的高效液相色谱法。采用Agilent Hypersil ODS C18色谱柱(150mm×4.6mm,5μm),流动相为甲醇-5%异丙醇水溶液(60:40,v/v),流速为1.0mL/min,检测波长为280nm。血浆与脑中槀苯内酯浓度线性检测范围分别为93.75~3750ng/m(r=0.9999)和93.75~3750ng/g(r=0.9997),日内及日间精密度RSD10%。本法适用于大鼠口服LIG后血浆及脑中药物浓度的研究。  相似文献   

4.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

5.
A selective and sensitive method for the determination of the HIV protease inhibitor saquinavir in human plasma, saliva, and urine using liquid-liquid extraction and LC-MS-MS has been developed, validated, and applied to samples of a healthy individual. After extraction with ethyl acetate, sample extracts were chromatographed isocratically within 5 min on Kromasil RP-18. The drug was detected with tandem mass spectrometry in the selected reaction monitoring mode using an electrospray ion source and 2H(5)-saquinavir as internal standard. The limit of quantification was 0.05 ng/mL. The accuracy of the method varied between -1 and +10% (SD within-batch) and the precision ranged from +4 to +10% (SD batch-to-batch). The method is linear at least within 0.05 and 87.6 ng/mL. After a regular oral dose (600 mg) saquinavir concentrations were detectable for 48 h in plasma and were well correlated with saliva concentrations (r(2)=0.9348, mean saliva/plasma ratio 1:15.1). The method is well suited for low saquinavir concentrations in different matrices.  相似文献   

6.
A selective and sensitive spectrofluorimetric method was developed and validated for the determination of amoxapine in human plasma and urine. The developed method is based on labeling with 5‐dimethylaminonaphthalene‐1‐sulfonyl chloride (dansyl chloride) and monitoring at 397 nm (excitation)/514 nm (emission). The method was validated for linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, recovery and robustness. The calibration curves were linear over a concentration range of 250–2500 and 50–1250 ng/mL for plasma and urine, respectively. The LOD values were calculated to be 13.31 and 13.17 ng/mL for plasma and urine, respectively. The proposed method was applied to study of amoxapine in human plasma and urine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
本文建立了一种快速、高灵敏的HPLC-MS/MS法用于检测人血浆中的草乌甲素浓度。血浆样品采用沃特斯HLB小柱进行固相萃取,汉邦C18色谱柱(150 mm×4.6 mm,5μm)进行分离,流动相为甲醇∶水(85∶15,v/v),水相含10 mmol/L的醋酸铵和0.1%的甲酸。采用ESI源和多反应监测(MRM)的方式进行检测,草乌甲素及内标的反应离子对分别为644.4/584.4和237.2/194.2,草乌甲素血药浓度在0.010~1.0 ng/mL范围内线性关系良好,最低定量限为0.010 ng/mL可以满足口服0.4 mg草乌甲素后血药浓度的检测,日内日间及质控样品精密度及准确度均在允许范围内。本检测方法被成功的应用在中国健康志愿者生物等效性研究中,20名志愿者口服0.4 mg草乌甲素试验制剂和参比制剂后主要药代动力学参数分别如下:Cmax(0.325±0.110),(0.323±0.115)ng/mL;AUC0-16(1.627±0.489),(1.732±0.556)ng.h/mL;AUC0-∞(1.730±0.498),(1.831±0.562)ng.h/mL;t1/2(4.26±0.95),(3.80±0.90)h;Tmax(1.34±0.54),(1.83±0.99)h。  相似文献   

8.
A new high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) assay for cediranib, a tyrosine kinase inhibitor for VEGFRs, was developed and validated, for the determination of plasma and brain levels of cediranib in small specimen volumes. Tyrphostin (AG1478) was used as internal standard. Mouse plasma and brain homogenate samples were prepared using liquid-liquid extraction. The assay was validated for a 2.5-2500 ng/mL concentration range for plasma, and for 1-2000 ng/mL range for brain homogenate. For these calibration ranges, within-assay variabilities were 1.1-14.3% for plasma and 1.5-9.4% for brain homogenate; between-assay variabilities were 2.4-9.2% for plasma, and 4.9-10.2% for brain homogenate. Overall accuracy ranged from 101.5 to 107.0% for plasma and 96.5 to 100.2% for brain homogenate, for all target concentrations. The developed assay has been successfully applied for a brain distribution study in mice at an oral dose of 5 mg/kg.  相似文献   

9.
A highly sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of the prodrug fosinopril and its major active metabolite fosinoprilat for pharmacokinetic studies in healthy subjects. In order to get the lower limit of quantification (LLOQ), especially for analysis of fosinopril, key points of the method have been investigated including chromatographic conditions and selection of LC-MS/MS conditions. The analytes were extracted from plasma samples by liquid-liquid extraction, separated on a reversed-phase C(8) column using gradient procedure, and detected by tandem mass spectrometry with a triple quadrupole ionization interface. The analytes and internal standard zaleplon were detected using positive electrospray ionization (ESI) in the SRM mode. The LLOQ of the method down to 0.1 ng mL(-1) for fosinopril and 1.0 ng mL(-1) for fosinoprilat were identifiable and reproducible. The standard calibration curves for both fosinopril and fosinoprilat were linear over the ranges of 0.1-15.0 and 1.0-700 ng mL(-1) in human plasma, respectively. The within- and between-batch precisions (relative standard deviation (RSD)%) and the accuracy were acceptable. The validated method was successfully applied to reveal the pharmacokinetic properties of fosinopril and fosinoprilat after oral administration.  相似文献   

10.
A reliable liquid chromatography/tandem mass spectrometry has been developed for simultaneous evaluation of the activities of five cytochrome P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) in rat plasma and urine. The five-specific probe substrates/metabolites include phenacetin/paracetamol (CYP1A2), tolbutamide/4-hydroxytolbutamide and carboxytolbutamide (CYP2C9), mephenytoin/4'-hydroxymephenytoin (CYP2C19), dextromethorphan/dextrorphan (CYP2D6), and midazolam/1'-hydroxymidazolam (CYP3A). Internal standards were brodimoprim (for phenacetin, paracetamol, midazolam and 1'-hydroxymidazolam), ofloxacin (for 4'-hydroxymephenytoin, dextromethorphan and dextrorphan) and meloxicam (for tolbutamide, 4-hydroxytolbutamide and carboxytolbutamide). Sample preparation was conducted with solid-phase extraction using Oasis HLB cartridges. The chromatography was performed using a C(18) column with mobile phase consisting of methanol/0.1% formic acid in 20 mM ammonium formate (75:25). The triple-quadrupole mass spectrometric detection was operated in both positive mode (for phenacetin, paracetamol, midazolam, 1'-hydroxymidazolam, brodimoprim, 4'-hydroxymephenytoin, dextromethorphan, dextrorphan and ofloxacin) and negative mode (for tolbutamide, 4-hydroxytolbutamide, carboxytolbutamide and meloxicam). Multiple reaction monitoring mode was used for data acquisition. Calibration ranges in plasma were 2.5-2500 ng/mL for phenacetin, 2.5-2500 ng/mL for paracetamol, 5-500 ng/mL for midazolam, and 0.5-500 ng/mL for 1'-hydroxymidazolam. In urine calibration ranges were 5-1000 ng/mL for dextromethorphan, 0.05-10 microg/mL for dextrorphan and 4'-hydroxymephenytoin, 5-2000 ng/mL for tolbutamide, 0.05-20 microg/mL for 4-hydroxytolbutamide and 0.025-10 microg/mL for carboxytolbutamide. The intra- and inter-day precision were 4.3-12.4% and 1.5-14.8%, respectively for all of the above analytes. The intra- and inter-day accuracy ranged from -9.1 to 8.3% and -10 to 9.2%, respectively for all of the above analytes. The lower limits of quantification were 2.5 ng/mL for phenacetin and paracetamol, 5 ng/mL for midazolam, 0.5 ng/mL for 1'-hydroxymidazolam, 5 ng/mL for dextromethorphan, 50 ng/mL for dextrorphan and 4'-hydroxymephenytoin, 5 ng/mL for tolbutamide, 50 ng/mL for 4-hydroxytolbutamide and 25 ng/mL for carboxytolbutamide. All the analytes were evaluated for short-term (24 h, room temperature), long-term (3 months, -20 degrees C), three freeze-thaw cycles and autosampler (24 h, 4 degrees C) stability. The stability of urine samples was also prepared with and without beta-glucuronidase incubation (37 degrees C) and measured comparatively. No significant loss of the analytes was observed at any of the investigated conditions. The current method provides a robust and reliable analytical tool for the above five-probe drug cocktail, and has been successfully verified with known CYP inducers.  相似文献   

11.
In this study, a method using liquid chromatography triple quadrupole mass spectrometry (LC/MS/MS) is described for the analysis of the plant growth regulator chlormequat (CCC) in human urine. Analysis was carried out using selected reaction monitoring (SRM) in the positive ion mode. [(2)H(4)] labeled CCC as internal standard (IS) was used for quantification of CCC. The limit of detection (LOD) was determined to 0.1 ng/mL. The method was linear in the range 0.3-800 ng/mL urine and had a within-run precision of 4-9%. The between-run precision was determined at urine levels of 7.0 and 31 ng/mL and found to be 5 and 6% respectively. The reproducibility was 3-6%. To validate CCC as a biomarker of exposure, the method was applied in a human experimental oral exposure to CCC. Two healthy volunteers received 25 μg/kg b.w. CCC in a single oral dose followed by urine sampling for 46 h post-exposure. The CCC was estimated to follow a first order kinetic and a two compartment model with an elimination half-life of 2-3h and 10-14 h respectively. One hundred 24h urine samples were collected from non-occupationally exposed individuals in the general population in southern Sweden. All samples had detectable levels above the LOD 0.1 ng/mL urine. The median levels were 4 ng/mL of CCC in unadjusted urine. The levels found in the population samples are several magnitudes lower than those found in the experimental exposure, which corresponds to an oral exposure of 50% of the ADI for CCC.  相似文献   

12.
A simple and solvent-minimized sample preparation technique based on two-phase hollow fiber liquid phase microextraction has been developed and used to quantify the osthole in cerebral ischemia reperfusion rat plasma following oral administration. The analysis was performed by reversed phase high performance liquid chromatography with fluorescence detection. Extraction conditions such as solvent identity, agitation rate, salt concentration, extraction time, and length of the hollow fiber were optimized. Under the optimized conditions, the linear range of osthole in rat plasma was 5-500 ng mL(-1) (r(2) = 0.9997). The limit of detection (LOD) was 2 ng mL(-1) (S/N = 3) with limit of quantification (LOQ) being 5 ng mL(-1). The validated method has been successfully applied for pharmacokinetic studies of osthole from cerebral ischemia reperfusion rat plasma after oral administration.  相似文献   

13.
A rugged, sensitive and efficient liquid chromatography-tandem mass spectrometry method was developed and validated for the quantitative analysis of firocoxib in urine from 5 to 3000 ng/mL and in plasma from 1 to 3000 ng/mL. The method requires 200 microL of either plasma or urine and includes sample preparation in 96-well solid phase extraction (SPE) plates using a BIOMEK 2000 Laboratory Automated Workstation. Chromatographic separation of firocoxib from matrix interferences was achieved using isocratic reversed phase chromatography on a PHENOMENEX LUNA Phenyl-Hexyl column. The mobile phase was 45% acetonitrile and 55% of a 2 mM ammonium formate buffer. The method was accurate (88-107%) and precise (CV<12.2%) within and between sets. Extraction efficiencies (recovery)>93% were achieved and ionization efficiencies (due to matrix effects) were >72%. Extensive stability and ruggedness testing was also performed; therefore, the method can be used for pharmacokinetic studies as well as drug monitoring and screening. The data presented here is the first LC-MS/MS method for the quantitation of firocoxib in plasma (LLOQ of 1 ng/mL), a 25-fold improvement in sensitivity over the HPLC-UV method and the first quantitative method for firocoxib in urine (LLOQ of 5 ng/mL). Additionally the sample preparation process has been automated to improve efficiency.  相似文献   

14.
A sensitive reversed-phase HPLC-UV method was developed for the determination of firocoxib, a novel and highly selective COX-2 inhibitor, in plasma. A 1.0 mL dog or horse plasma sample is mixed with water and passed through a hydrophobic-lipophilic copolymer solid-phase extraction column to isolate firocoxib. Quantitation is based on an external standard curve. The method has a validated limit of quantitation of 25 ng/mL and a limit of detection of 10 ng/mL. The validated upper limit of quantitation was 2500 ng/mL for horses and 10,000 ng/mL for dogs. The average recoveries ranged from 88-93% for horse plasma and 96-103% for dog plasma. The coefficient of variation in all cases was less than 10%. This method is suitable for the analysis of clinical samples from pharmacokinetic and bioequivalence studies and drug monitoring.  相似文献   

15.
A simple and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method using an atmospheric pressure chemical ionization source (APCI) for the quantification of fenretinide (4-HPR) in mouse plasma was developed and validated. After a simple protein precipitation of plasma sample by acetonitrile, 4-HPR was analyzed by LC-APCI-MS/MS. High-performance liquid chromatography (HPLC) separation was conducted on a Hypurity C18 column (50mmx2.1mm, 5microm) with a flow rate 0.60mL/min using a gradient mobile phase comprised of 0.05% formic acid in water (A) and methanol (B), and a run time of 4.5min. The elimination of a tedious sample preparation process and a shorter run time substantially reduced total analysis time. The method was linear over the range 0.5-100ng/mL, with r>0.998. The intra- and inter-assay precisions were 1.4-9.2% and 5.1-8.2%, respectively, and the intra- and inter-assay accuracies were 93.9-98.6% and 92.7-95.3%, respectively. The absolute recoveries were 90.3% (1.5ng/mL), 97.0% (7.5ng/mL) and 92.1% (75.0ng/mL) for 4-HPR, and 99.1% for the internal standard (150ng/mL). The analytical method had excellent sensitivity using a small sample volume (30microL) with the lower limit of quantification (LLOQ) 0.5ng/mL. This method is robust and has been successfully employed in a pharmacokinetic study of 4-HPR in a mouse xenograft model of neuroblastoma.  相似文献   

16.
Higenamine is an active ingredient of Aconite root in Chinese herbal medicine and might be used as a new agent for a pharmaceutical stress test and was approved to undergo clinical pharmacokinetic study. Therefore, there exists a need to establish a sensitive and rapid method for the determination of higenamine in human plasma and urine. This paper described a sensitive and rapid method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the determination of higenamine in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the compounds from biological matrices followed by injection of the extracts onto an Atlantis dC18 column with isocratic elution. The mobile phase was 0.05% formic acid in water-methanol (40:60, v/v). The mass spectrometry was carried out using positive electrospray ionization (ESI) and data acquisition was carried out in the multiple reaction monitoring (MRM) mode. The method was fully validated over the concentration range of 0.100-50.0 ng/mL and 1.00-500 ng/mL in plasma and urine, respectively. The lower limits of quantification (LLOQs) were 0.100 and 1.00 ng/mL in plasma and urine, respectively. Inter- and intra-batch precision was less than 15% and the accuracy was within 85-115% for both plasma and urine. Extraction recovery was 82.1% and 56.6% in plasma and urine, respectively. Selectivity, matrix effects and stability were also validated in human plasma and urine. The method was applied to the pharmacokinetic study of higenamine hydrochloride in Chinese healthy subjects.  相似文献   

17.
A bioanalytical method for the analysis of oseltamivir (OP) and its metabolite oseltamivir carboxylate (OC) in human plasma, saliva and urine using off-line solid-phase extraction and liquid chromatography coupled to positive tandem mass spectroscopy has been developed and validated. OP and OC were analysed on a ZIC-HILIC column (50 mm x 2.1 mm) using a mobile phase gradient containing acetonitrile-ammonium acetate buffer (pH 3.5; 10mM) at a flow rate of 500 microL/min. The method was validated according to published FDA guidelines and showed excellent performance. The lower limit of quantification for OP was determined to be 1, 1 and 5 ng/mL for plasma, saliva and urine, respectively and for OC was 10, 10 and 30 ng/mL for plasma, saliva and urine, respectively. The upper limit of quantification for OP was determined to be 600, 300 and 1500 ng/mL for plasma, saliva and urine, respectively and for OC was 10,000, 10,000 and 30,000 ng/mL for plasma, saliva and urine, respectively. The within-day and between-day precisions expressed as R.S.D., were lower than 5% at all tested concentrations for all matrices and below 12% at the lower limit of quantification. Validation of over-curve samples ensured that it would be possible with dilution if samples went outside the calibration range. Matrix effects were thoroughly evaluated both graphically and quantitatively. No matrix effects were detected for OP or OC in plasma or saliva. Residues from the urine matrix (most likely salts) caused some ion suppression for both OP and its deuterated internal standard but had no effect on OC or its deuterated internal standard. The suppression did not affect the quantification of OP.  相似文献   

18.
Glyburide (glibenclamide, INN), a second generation sulfonylurea is widely used in the treatment of gestational diabetes mellitus (GDM). None of the previously reported analytical methods provide adequate sensitivity for the expected sub-nanogram/mL maternal and umbilical cord plasma concentrations of glyburide during pregnancy. We developed and validated a sensitive and low sample volume liquid chromatographic-mass spectrometric (LC-MS) method for simultaneous determination of glyburide (GLY) and its metabolite, 4-transhydroxy glyburide (M1) in human plasma (0.5 mL) or urine (0.1 mL). The limits of quantitation (LOQ) for GLY and M1 in plasma were 0.25 and 0.40 ng/mL, respectively whereas it was 1.06 ng/mL for M1 in urine. As measured by quality control samples, precision (% coefficient of variation) of the assay was <15% whereas the accuracy (% deviation from expected) ranged from -10.1 to 14.3%. We found that the GLY metabolite, M1 is excreted in the urine as the glucuronide-conjugate.  相似文献   

19.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated to determine HS270, a new histone deacetylase (HDAC) inhibitor, in rat plasma using SAHA as the internal standard (IS). After a single step liquid-liquid extraction with acetoacetate, analytes were subjected to LC-MS/MS analysis using positive electro-spray ionization (ESI(+)) under selected reaction monitoring mode (SRM). The chromatographic separation was achieved on a Hypurity C(18) column (50 mm × 2.1 mm, i.d., 5 μm). The MS/MS detection was conducted by monitoring the fragmentation of m/z 392.3→100.1 for HS270, m/z 265.1→232.1 for IS. The method had a chromatographic running time of 2.5 min and linear calibration curves over the concentrations of 0.5-1000 ng/mL. The recovery of the method was 70.8-82.5% and the lower limit of quanti?cation (LLOQ) was 0.5 ng/mL. The intra- and inter-batch precisions were less than 15% for all quality control samples at concentrations of 1.0, 100.0, and 750.0 ng/mL. The validated LC-MS/MS method has successfully applied to a HS270 pharmacokinetic study after oral doses of 25, 50, 100, 200 mg/kg, and i.v. dose of 5 mg/kg to rats.  相似文献   

20.
Roscovitine, a purine analogue that selectively inhibits cyclin-dependent kinases, has been considered as a potential anti-tumor drug. The determination of roscovitine in plasma and urine was performed using microextraction in packed syringe as on-line sample preparation method with liquid chromatography and tandem mass spectrometry. The sampling sorbent utilized was polystyrene polymer. 2H3-lidocaine was used as internal standard. The limit of detection for roscovitine was as low as 0.5 ng/mL and the lower limit of quantification was 1.0 ng/mL. The accuracy and precision values of quality control samples were between +/-15% and < or =11%, respectively. The calibration curve was obtained within the concentration range 0.5-2000 ng/mL in both plasma and urine. The regression correlation coefficients for plasma and urine samples were > or =0.999 for all runs. The present method is miniaturized and fully automated and can be used for pharmacokinetic and pharmacodynamic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号