首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The transposable element Tc1 is responsible for most spontaneous mutations that occur in Caenorhabditis elegans variety Bergerac. We investigated the genetic and molecular properties of Tc1 transposition and excision. We show that Tc1 insertion into the unc-54 myosin heavy-chain gene was strongly site specific. The DNA sequences of independent Tc1 insertion sites were similar to each other, and we present a consensus sequence for Tc1 insertion that describes these similarities. We show that Tc1 excision was usually imprecise. Tc1 excision was imprecise in both germ line and somatic cells. Imprecise excision generated novel unc-54 alleles that had amino acid substitutions, amino acid insertions, and, in certain cases, probably altered mRNA splicing. The DNA sequences remaining after Tc1 somatic excision were the same as those remaining after germ line excision, but the frequency of somatic excision was at least 1,000-fold higher than that of germ line excision. The genetic properties of Tc1 excision, combined with the DNA sequences of the resulting unc-54 alleles, demonstrated that excision was dependent on Tc1 transposition functions in both germ line and somatic cells. Somatic excision was not regulated in the same strain-specific manner as germ-line excision was. In a genetic background where Tc1 transposition and excision in the germ line was not detectable, Tc1 excision in the soma still occurred at high frequency.  相似文献   

2.
A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase-transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals.  相似文献   

3.
Two plasmid deoxyribonucleic acid sequences mediating multiple antibiotic resistance transposed in vivo between coexisting plasmids in clinical isolates of Serratia marcescens. This event resulted in the evolution of a transferable multiresistance plasmid. Both sequences, designated in Tn1699 and Tn1700, were flanked by inverted deoxyribonucleic acid repetitions and could transpose between replicons independently of the Excherichia coli recA gene function. Tn1699 and Tn1700 mediated ampicillin, carbenicillin, kanamycin, and gentamicin resistance but differed in the type of gentamicin-acetyltransferase enzymes that they encoded. The structural genes for these enzymes share a great deal of polynucleotide sequence similarity despite their phenotypic differences. The transposition of Tn1699 and Tn1700 to coresident transferable plasmids has contributed to the dissemination of antibiotic resistance among other gram-negative bacteria. These organisms have recently caused nosocomial infections in epidemic proportions.  相似文献   

4.
R483, a plasmid of the Ialpha incompatibility group, contained a deoxyribonucleic acid (DNA) sequence encoding resistance to trimethoprim (TpR) and streptomycin (SmR) that could be transposed to other replicons, i.e., to the Escherichia coli chromosome and to related and unrelated plasmids. Each transposition resulted in the acquisition by the recipient replicon of a segment of DNA of about 9 X 10(6) daltons, both resistance genes, but never the colicin Ia or pilus genes of R483. Transposition took place at a single chromosomal site between dnaA and ilv and did not suppress the DnaA phenotype, in contrast to integration of the whole R483 plasmid. The chromosome, having received the transposition, could secondarily act as a transposition donor to another plasmid. Such a plasmid was indistinguishable from one having received a direct transposition from R483. TpR SmR transposition was very site specific and did not require a functional recA+ gene. We postulate that the TpR SmR segment of R483 is a transposon (TnC) with specific boundary sequences.  相似文献   

5.
DNA rearrangements associated with a transposable element in yeast   总被引:55,自引:0,他引:55  
G S Roeder  G R Fink 《Cell》1980,21(1):239-249
The his4-912 mutation results from insertion of a 6200 bp transposable element into the his4 gene of yeast. In order to clone the his4-912 mutation, the plasmid pBR322 was integrated into the his4 gene by means of yeast transformation, and then the vector sequences and the his4-912 insertion element were excised as a single restriction fragment. This his 4-912 insertion element is homologous to Ty1, a family of repetitive yeast DNA sequences. His+ revertants derived from the his4-912 mutant carry a number of chromosomal aberrations including deletions, translocations, a transposition and an inversion. The majority of His+ revertants result from deletions which have both endpoints within the element and which leave behind only 300 bp of the insertion element. Other derivatives of the his4-912 mutant carry deletions which have one endpoint in the insertion element and one endpoint in the his4 coding sequence. In two His+ revertants carrying reciprocal translocations, the chromosome III translocation breakpoints occur within the his4-912 insertion element. A His+ revertant carrying an inversion of most of the left arm of chromosome III may be an intermediate in transposition of the his4-912 insertion element to a new site on chromosome III.  相似文献   

6.
Tn4451 is a 6.3-kb chloramphenicol resistance transposon from Clostridium perfringens and is found on the conjugative plasmid pIP401. The element undergoes spontaneous excision from multicopy plasmids in Escherichia coli and C. perfringens and conjugative excision from pIP401 in C. perfringens. Tn4451 is excised as a circular molecule which is probably the transposition intermediate. Excision of Tn4451 is dependent upon the site-specific recombinase TnpX, which contains potential motifs associated with both the resolvase/invertase and integrase families of recombinases. Site-directed mutagenesis of conserved amino acid residues within these domains was used to show that the resolvase/invertase domain was essential for TnpX-mediated excision of Tn4451 from multicopy plasmids in E. coli. An analysis of Tn4451 target sites revealed that the transposition process showed target site specificity. The Tn4451 target sequence resembled the junction of the circular form, and insertion occurred at a GA dinucleotide. Tn4451 insertions were flanked by directly repeated GA dinucleotides, and there was also a GA at the junction of the circular form, where the left and right termini of Tn4451 were fused. We propose a model for Tn4451 excision and insertion in which the resolvase/invertase domain of TnpX introduces 2-bp staggered cuts at these GA dinucleotides. Analysis of Tn4451 derivatives with altered GA dinucleotides provided experimental evidence to support the model.  相似文献   

7.
The Sleeping Beauty (SB) element is a useful tool to probe transposon-host interactions in vertebrates. We investigated requirements of DNA repair factors for SB transposition in mammalian cells. Factors of nonhomologous end joining (NHEJ), including Ku, DNA-PKcs, and Xrcc4 as well as Xrcc3/Rad51C, a complex that functions during homologous recombination, are required for efficient transposition. NHEJ plays a dominant role in repair of transposon excision sites in somatic cells. Artemis is dispensable for transposition, consistent with the lack of a hairpin structure at excision sites. Ku physically interacts with the SB transposase. DNA-PKcs is a limiting factor for transposition and, in addition to repair, has a function in transposition that is independent from its kinase activity. ATM is involved in excision site repair and affects transposition rates. The overlapping but distinct roles of repair factors in transposition and in V(D)J recombination might influence the outcomes of these mechanistically similar processes.  相似文献   

8.
When Escherichia coli are grown in the presence of 5-fluorouracil, the 5-fluorouracil is incorporated almost exclusively into ribonucleic acid as fluorouridylate. In this study, small but detectable amounts were incorporated into ribonucleic acid as fluorocytidylate and into deoxyribonucleic acid as fluorodeoxyuridylate and fluorodeoxycytidylate. The amount of 5-fluorouracil found in deoxyribonucleic acid as fluorodeoxyuridylate increased 50-fold when the cells were deficient in both deoxyuridine triphosphatase and uracil-deoxyribonucleic acid glycosylase activities. Therefore, the same mechanisms which excluded uracil from deoxyribonucleic acid in vivo also excluded 5-fluorouracil. Even though purified uracil-deoxyribonucleic acid glycosylase excised 5-fluorouracil from deoxyribonucleic acid at only 5% the rate with which it excised uracil, most of the 5-fluorouracil excised from deoxyribonucleic acid in vivo was apparently excised directly by uracil-deoxyribonucleic acid glycosylase rather than by repair initiated by excision of uracil.  相似文献   

9.
10.
The Tc3 Family of Transposable Genetic Elements in Caenorhabditis Elegans   总被引:14,自引:2,他引:12  
J. Collins  E. Forbes    P. Anderson 《Genetics》1989,121(1):47-55
We describe genetic and molecular properties of Tc3, a family of transposable elements in Caenorhabditis elegans. About 15 Tc3 elements are present in the genomes of several different wild-type varieties of C. elegans, but Tc3 transposition and excision are not detected in these strains. Tc3 transposition and excision occur at high frequencies, however, in strain TR679, a mutant identified because of its highly active Tc1 elements. In TR679, Tc3 is responsible for several spontaneous mutations affecting the unc-22 gene. Tc3-induced mutations are unstable, and revertants result from precise or nearly precise excision of Tc3. Although Tc3 is very active in TR679, it is not detectably active in several other mutator mutants, all of which exhibit high levels of Tc1 activity. Tc3 is 2.5 kilobases long, and except for sequences near its inverted repeat termini, it is unrelated to Tc1. The termini of Tc3 are inverted repeats of at least 70 base pairs; the terminal 8 nucleotides of Tc3 are identical to 8 of the terminal 9 nucleotides of Tc1.  相似文献   

11.
D3112 phage was shown to replicate via the process of coupled replication--transposition: the phage DNA is not excised from the chromosome after prophage induction and new phage copies insert into many different sites. The transposition is controlled by two D3112 early genes--A (mapped in the 1.5-3 kbp region) and B (3-4.5 kbp), and requires intact attL site (involvement of the phage right end attR not studied). D3112 is capable to transpose RP4 plasmid into the chromosome; both the D3112 and RP4 transpositions are rec-independent. The product of the early C gene which is not required for D3112 transposition has pleiotropic effect on the development of D3112 and is necessary for the process of D3112 DNA excision from the chromosome, for cell lysis as well as for mature phage production. We suggest that this gene is responsible for positive regulation of D3112 late genes expression, similar to the C gene of Mu phage or Q gene of lambda. Mutations in four D3112 late genes ts25, ts35, ts73 and ts110 do not affect transposition or excision processes. No detectable (less than 0.02 copies per cell) amount of linear or circular D3112 DNA is formed during the replication--transposition. Hence, in the course of replication and transposition processes D3112 genome has its ends permanently bound covalently to the chromosome. The excision of the D3112 DNA takes place at late stages.  相似文献   

12.
The genome of Abelson murine leukemia virus (A-MuLV) consists of sequences derived from both BALB/c mouse deoxyribonucleic acid and the genome of Moloney murine leukemia virus. Using deoxyribonucleic acid linear intermediates as a source of retroviral deoxyribonucleic acid, we isolated a recombinant plasmid which contained 1.9 kilobases of the 3.5-kilobase mouse-derived sequences found in A-MuLV (A-MuLV-specific sequences). We used this clone, designated pSA-17, as a probe restriction enzyme and Southern blot analyses to examine the arrangement of homologous sequences in BALB/c deoxyribonucleic acid (endogenous Abelson sequences). The endogenous Abelson sequences within the mouse genome were interrupted by noncoding regions, suggesting that a rearrangement of the cell sequences was required to produce the sequence found in the virus. Endogenous Abelson sequences were arranged similarly in mice that were susceptible to A-MuLV tumors and in mice that were resistant to A-MuLV tumors. An examination of three BALB/c plasmacytomas and a BALB/c early B-cell tumor likewise revealed no alteration in the arrangement of the endogenous Abelson sequences. Homology to pSA-17 was also observed in deoxyribonucleic acids prepared from rat, hamster, chicken, and human cells. An isolate of A-MuLV which encoded a 160,000-dalton transforming protein (P160) contained 700 more base pairs of mouse sequences than the standard A-MuLV isolate, which encoded a 120,000-dalton transforming protein (P120).  相似文献   

13.
A system of cells made permeable by treatment with high concentrations of surcrose (plasmolysis) has been exploited to study the excision repair of ultraviolet-irradiated deoxyribonucleic acid in Escherichia coli. It is demonstrated that adenosine 5'-triphosphate is required for incision breaks to be made in the bacterial chromosome as well as in covalently closed bacteriophage lambda deoxyribonucleic acid. After plasmolysis, uvrC mutant strains appear as defective in the incision step as the uvrA-mutated strains. This is in contrast to the situation in intact cells where uvrC mutants accumulate single-strand breaks during postirradiation incubation. These observations have led to the proposal of a model for excision repair, in which the ultraviolet-specific endonuclease, coded for by the uvrA and uvrB genes, exists in a complex with the uvrC gene product. The complex is responsible for the incision and possibly also the excision steps of repair. The dark-repair inhibitors acriflavine and caffeine are both shown to interfere with the action of the adenosine 5'-triphosphate-dependent enzyme.  相似文献   

14.
Labeled probes of unique-sequence human X chromosomal deoxyribonucleic acid, prepared by two different procedures, were used to measure the amount of human X chromosomal deoxyribonucleic acid in 12 mouse cell lines expressing human hypoxanthine phosphoribosyltransferase after chromosome-mediated gene transfer. The amount of X chromosomal deoxyribonucleic acid detected by this procedure ranged from undetectable levels in the three stable transformants and some unstable transformants examined to about 20% of the human X chromosome in two unstable transformants. Reassociation kinetics of the X chromosomal probe with deoxyribonucleic acid from the two unstable transformants containing 15 to 20% of the human X chromosome indicate that a single copy of these sequences is present. In one of these lines, the X chromosomal sequences exist as multiple fragments which were not concordantly segregated when the cells were selected for loss of hprt.  相似文献   

15.
A general, reliable conjugation system for Agrobacterium tumefaciens in the absence of plant tissue is described in which A. tumefaciens can serve either as the donor or recipient of plasmid deoxyribonucleic acid with reasonable efficiency. Plasmid RP4 was transferred from Escherichia coli to A. tumefaciens and from strain of A. tumefaciens. Both RP4 and the A. tumefaciens virulence-associated plasmids were detected by alkaline sucrose gradients in A. tumefaciens strains A6 and C58 after mating with E. coli J53(RP4). The pathogenicity (tumor foramtion) of strains A6 and C58 and the sensitivity of strain C58 to bacteriocin 84 were unaffected by the acquistion of RP4 by the Agrobacterium strains. Plasmid R1drd-19 was not transferred to A. tumefaciens. Transformation experiments with plasmid deoxyribonucleic acid were unsuccessful, even though, in the case of RP4, conjugation studies showed taht the deoxyribonucleic acid was compatible with that of the recipient strains.  相似文献   

16.
Summary. We have previously established a transgenic Drosophila line with a highly transposable P element insertion. Using this strain we analyzed transposition and excision of the P element at the molecular level. We examined sequences flanking the new insertion sites and those of the remnants after excision. Our results on mobilization of the P element demonstrate that target-site duplication at the original insertion site does not play a role in forward excision and transposition. After P element excision an 8 by target-site duplication and part of the 31 by terminal inverted repeat (5–18 bp) remained in all the strains examined. Moreover, in 11 out of 28 strains, extra sequences were found between the two remaining inverted repeats. The double-strand gap repair model does not explain the origin of these extra sequences. The mechanism creating them may be similar to the hairpin model proposed for the transposon Tam in Antirrhinum majus.  相似文献   

17.
A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition.  相似文献   

18.
P. J. Ferris 《Genetics》1989,122(2):363-377
While pursuing a chromosomal walk through the mt+ locus of linkage group VI of Chlamydomonas reinhardtii, I encountered a 12-kb sequence that was found to be present in approximately 12 copies in the nuclear genome. Comparison of various C. reinhardtii laboratory strains provided evidence that the sequence was mobile and therefore a transposon. One of two separate natural isolates interfertile with C. reinhardtii, C. smithii (CC-1373), contained the transposon, but at completely different locations in its nuclear genome than C. reinhardtii; and a second, CC-1952 (S1-C5), lacked the transposon altogether. Genetic analysis indicated that the transposon was found at dispersed sites throughout the genome, but had a conserved structure at each location. Sequence homology between the termini was limited to an imperfect 15-bp inverted repeat. An 8-bp target site duplication was created by insertion; transposon sequences were completely removed upon excision leaving behind both copies of the target site duplication, with minor base changes. The transposon contained an internal region of unique repetitive sequence responsible for restriction fragment length heterogeneity among the various copies of the transposon. In several cases it was possible to identify which of the dozen transposons in a given strain served as the donor when a transposition event occurred. The transposon often moved into a site genetically linked to the donor, and transposition appeared to be nonreplicative. Thus the mechanism of transposition and excision of the transposon, which I have named Gulliver, resembles that of certain higher plant transposons, like the Ac transposon of maize.  相似文献   

19.
Events following prophage Mu induction.   总被引:13,自引:2,他引:11       下载免费PDF全文
Escherichia coli strains lysogenic for a thermoinducible Mu prophage (Mu cts62) undergo rapid lysis about 50 min after heat induction. Induction of Mu cts62 apparently causes damage to the host sequences in which Mu is inserted. The normal expression of A, BU, and X genes of Mu is needed for this specific deleterious effect on the prophage-containing host sequences. Mu deoxyribonucleic acid can be shown to reintegrate extensively at different sites on the host genome during the lytic cycle after prophage induction or after infection of sensitive cells by clear-plaque mutants of Mu. We estimate that approximately 10 copies of Mu deoxyribonucleic acid are inserted per chromosome during vegetative growth. The episome rescue method for detecting vegetative Mu deoxyribonucleic acid insertion, in which an episome is transferred from the lytically infected cells to F- receipient cells, can be applied to study Mu integration without requiring the host cells to survive. It also provides an easy system to isolate Mu insertions in transmissible episomes and plasmids.  相似文献   

20.
A mutant of micrococcus radiodurans which is deficient in recombination has been isolated after treatment of the wild type with N-methyl-N'-nitro-N-nitrosoguanidine. We have called this mutant Micrococcus radiodurans rec30. The efficiency of recombination in this mutant, as measured by transformation, is less than 0.01% that of the wild type. It is 15 times more sensitive to the lethal action of ultraviolet radiation, 120 times more sensitive to ionizing radiation, and 300 times more sensitive to mitomycin C (MMC) than the wild type. It is probably inactivated by a single MMC-induced deoxyribonucleic acid cross-link per genome. The excision of ultraviolet-induced pyrimidine dimers is normal. There is no radiation-induced degradation of deoxyribonucleic acid. All spontaneous revertants selected for resistance to low levels of MMC had wild-type resistance to radiation and MMC, and the same efficiency of recombination as the wild type, suggesting that the recombination deficiency of the strain is due to a single mutation. Deoxyribonucleic acid from this mutant can transform M. radiodurans UV17 presumed deficient in an exr type gene to wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号