首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Closely related tropical bird species often occupy mutually exclusive elevational ranges, but the mechanisms generating and maintaining this pattern remain poorly understood. One hypothesis is that replacement species are segregated by interference competition (e.g. territorial aggression), but the extent to which competition combines with other key factors such as specialization to distinct habitats remains little studied. Using vegetation surveys and reciprocal playback experiments, we explored the dynamics of interspecific aggression between two Nightingale-Thrushes Catharus sp. in Central America. We show that lower-elevation Black-headed Nightingale-Thrushes Catharus mexicanus are aggressive towards higher-elevation Ruddy-capped Nightingale-Thrushes Catharus frantzii where they meet at contact zones. However, interspecific aggressive responses were weak and unidirectional, and the two species were associated with different habitats. We conclude that the contact zone is maintained and located primarily by habitat selection, and is probably reinforced by interspecific aggression. This has important implications for understanding how montane species will respond to climate change because the pace and extent of range shifts will not depend solely on habitat shifts or interspecific competition, but instead on interactions between these two factors.  相似文献   

2.
A common pattern in tropical avifaunas is for closely related species to inhabit largely parapatric elevational distributions such that they replace one another along the elevational gradient. A long‐standing hypothesis for this pattern is that parapatry is maintained by interspecific interference competition mediated by interspecific aggression. However, empirical tests of this hypothesis remain scarce. We used reciprocal playback experiments to measure interspecific aggression in five species‐pairs of New Guinean passerine elevational replacements. We found evidence of interspecific aggression in three species‐pairs. In these three cases, interspecific aggression was asymmetric, with the lower elevation species more aggressive towards the upper elevation species than vice versa. Two patterns suggest that this interspecific aggression is a learned response to the presence of a heterospecific competitor rather than misdirected intraspecific aggression or an evolved response to a competitor. First, when present, interspecific aggression was always strongest at the upper elevation range margin of the lower elevation species (i.e. in the elevational zone in which the two species were found in close proximity and thus interacted with each other), and diminished over very short distances away from this zone. Secondly, the two species‐pairs that did not exhibit interspecific aggression had narrow ‘no man's land’ gaps between their elevational distributions such that heterospecifics did not encounter one another, possibly explaining the lack of interspecific aggression in these examples. Our results support the hypothesis that interspecific aggression is one factor influencing elevational limits in species‐pairs of New Guinean elevational replacements.  相似文献   

3.
Interspecific aggression is a critical determinant of the success and competitive superiority of many invasive over native species. While single abiotic stressors can alter aggression levels, the manner in which multiple stressors may alter the strength and outcome of interspecific interactions and hence the invasion potential of a species is still poorly understood, even though multiple stressors are prevalent in many ecosystems. Furthermore, multiple stressors may interact to produce synergistic or antagonistic effects on individual level behaviors, thereby modulating invasive-native species interactions in unexpected ways. Here we examined the effect of two key abiotic stressors in freshwater ecosystems-temperature and salinity-on interspecific aggression between the invasive eastern mosquito fish (Gambusia holbrooki) and juveniles of the native Australian bass (Macquaria novemaculeata). Under controlled laboratory conditions, individuals were exposed to low or high salinity levels (15 and 35‰), and low or high temperatures (21 and 28 °C), and the frequency of interspecific aggressive behaviors was scored. The effect of temperature and salinity on interspecific aggression was antagonistic for both M. novemaculeata and G. holbrooki. While elevated temperature promoted aggression, elevated salinity partially or entirely negated this effect. Moreover, regardless of temperature, M. novemaculeata was more aggressive than G. holbrooki under elevated salinity. In addition to this, the native displayed more aggression to smaller than larger heterospecifics when exposed to elevated salinity alone, while G. holbrooki showed no such preference. These results highlight the importance of considering the interplay between multiple abiotic stressors and behavioral interactions between invasive and native species, combined with the modulating effect of species-specific and size based responses to those stressors.  相似文献   

4.
Behaviours or traits associated with aggression and communication may increase an animal's conspicuousness to predators or parasitoids. Most examples of this come from instances of aggression or communication within a species. We tested whether interspecific encounters between ants enhance the host location success of a parasitoid (Diptera: Phoridae) that attacks ants in the genus Linepithema. At food resources recruited to by Linepithema, parasitoid discovery rates were lower when Linepithema was alone than when other ant species were present. In experimentally controlled encounters, parasitoid discovery rates were elevated when Linepithema confronted an ant species that elicited use of chemicals, but not when it confronted an ant species that primarily elicited physical aggression. These results indicate that phorid parasitoids of Linepithema use the ant's chemicals as host location cues. Because Linepithema is known to abandon food resources in the presence of its phorid parasitoids, its use of chemicals during interspecific encounters may diminish its competitive success when phorids are nearby. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

5.
Discussions about social behavior are generally limited to fitness effects of interactions occurring between conspecifics. However, many fitness relevant interactions take place between individuals belonging to different species. Our detailed knowledge about the role of hormones in intraspecific interactions provides a starting point to investigate how far interspecific interactions are governed by the same physiological mechanisms. Here, we carried out standardized resident–intruder (sRI) tests in the laboratory to investigate the relationship between androgens and both intra- and interspecific aggression in a year-round territorial coral reef fish, the dusky gregory, Stegastes nigricans. This damselfish species fiercely defend cultivated algal crops, used as a food source, against a broad array of species, mainly food competitors, and thus represent an ideal model system for comparisons of intra-and interspecific territorial aggression. In a first experiment, resident S. nigricans showed elevated territorial aggression against intra- and interspecific intruders, yet neither elicited a significant increase in androgen levels. However, in a second experiment where we treated residents with flutamide, an androgen receptor blocker, males but not females showed decreased aggression, both towards intra- and interspecific intruders. Thus androgens appear to affect aggression in a broader territorial context where species identity of the intruder appears to play no role. This supports the idea that the same hormonal mechanism may be relevant in intra- and interspecific interactions. We further propose that in such a case, where physiological mechanisms of behavioral responses are found to be context dependent, interspecific territorial aggression should be considered a social behavior.  相似文献   

6.
We analysed the temporal and sexual patterns of intra- and interspecific aggression in sympatric harriers during the breeding season, to determine the main resource defended (food, nest sites, mates) and how factors such as body size or breeding system (territorial versus colonial) influence aggressive behaviour. We predicted that if aggression is (at least partly) related to competition for food, the hen harrier, Circus cyaneus, because of its large size and territorial system, should be more aggressive (both intra- and interspecifically) than the smaller, colonial Montagu's harrier, Circus pygargus. The intraspecific aggression rate of both harriers peaked early in the season, was mainly intrasexual and increased with the number of neighbours. These patterns support the mate competition hypothesis to explain intraspecific aggression in both species. Montagu's harriers were more aggressive towards conspecifics than hen harriers. Their aggression rates towards heterospecifics were high at the start of the season then decreased, supporting the hypothesis that interspecific aggression serves primarily for nest site defence. Hen harriers showed lower interspecific aggression rates in the prelaying period and a gradual increase throughout the breeding cycle, particularly by females, who hunt around the nest for food for the nestlings. These patterns correspond to food competition, as food resources around the nest are probably more important and interspecific intrusion more costly for territorial hen harriers than for colonial Montagu's harriers. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

7.
Traits that mediate intraspecific social interactions may overlap in closely related sympatric species, resulting in costly between-species interactions. Such interactions have principally interested investigators studying the evolution of reproductive isolation via reproductive character displacement (RCD) or reinforcement, yet in addition to reproductive interference, interspecific trait overlap can lead to costly between-species aggression. Previous research on rubyspot damselflies (Hetaerina spp.) demonstrated that sympatric shifts in male wing colour patterns and competitor recognition reduce interspecific aggression, supporting the hypothesis that agonistic character displacement (ACD) drove trait shifts. However, a recent theoretical model shows that RCD overshadows ACD if the same male trait is used for both female mate recognition and male competitor recognition. To determine whether female mate recognition is based on male wing coloration in Hetaerina, we conducted a phenotype manipulation experiment. Compared to control males, male H. americana with wings manipulated to resemble a sympatric congener (H. titia) suffered no reduction in mating success. Thus, female mate recognition is not based on species differences in male wing coloration. Experimental males did, however, experience higher interspecific fighting rates and reduced survival compared to controls. These results greatly strengthen the case for ACD and highlight the mechanistic distinction between ACD and RCD.  相似文献   

8.
Vertebrates live in complex species networks in which interspecific interactions are common. In some contexts, the aggressive behaviours shown in these interspecific interactions are very similar to those shown in intraspecific interactions. It is still an open question whether intra‐ and interspecific aggression share common causality. We studied a year‐round territorial species the jewel damselfish, (Plectroglyphidodon lacrymatus), which cultivate algae they feed on. Territory holders aggressively defend these algae that are an attractive resource for many other species. In this study, we recorded territorial aggression in free‐living individuals and recorded aggressive responses to a standardized territorial intrusion test in captive individuals. Field observations indicated that territorial aggression was selectively targeted towards food competitors. Independent of the size of the species, aggression was more frequent towards common species around their territories. This relationship was confirmed experimentally by confronting the jewel damselfish with novel objects to which the subjects were exposed either frequently or rarely. We suggest that jewel damselfish have to learn which species are competitors and therefore should be chased. In a standardized intrusion test with captive individuals, no significant differences were found in territorial responses towards intra‐ or interspecific intruders. Neither territorial aggression nor the intrusion showed any relationship with plasma androgen levels. Together, these data suggest that experience might be more important in non‐seasonal territorial aggression than circulating hormonal factors.  相似文献   

9.
Animal space use patterns can be affected by the intra- and interspecific density of individuals competing for resources, with home ranges generally decreasing with increasing population density. By applying spatially explicit capture–recapture models implemented in the R package secr, we study whether home ranges of co-occurring yellow-necked mice, Apodemus flavicollis, and bank voles, Myodes glareolus, are related to population density of (a) conspecifics (intraspecific density), (b) the other sympatric species, A. flavicollis or M. glareolus (interspecific density), or (c) total rodent density (A. flavicollis plus M. glareolus). Home ranges of both species were negatively related to intraspecific population density, and were not related to interspecific density or total rodent density. Given that rodents tend to reduce home ranges if resources are abundant, this pattern may merely result from the higher abundance of resources generally associated with high density populations, if the two species were responding to different subsets of resources. However, intraspecific density could directly reduce home ranges, because conspecifics are more likely to interfere with each other due to the overlapping of space use patterns. Therefore, results suggest complementary space or resource use patterns between species, with consequent weak competition and niche differentiation. Across several years and population densities, home ranges of the two co-occurring rodents thus appear to be affected by conspecifics only, suggesting that the two species may coexist in the study area owing to limited space or resource use overlap.  相似文献   

10.
Interspecific territoriality occurs when individuals of different species fight over space, and may arise spontaneously when populations of closely related territorial species first come into contact. But defence of space is costly, and unless the benefits of excluding heterospecifics exceed the costs, natural selection should favour divergence in competitor recognition until the species no longer interact aggressively. Ordinarily males of different species do not compete for mates, but when males cannot distinguish females of sympatric species, females may effectively become a shared resource. We model how reproductive interference caused by undiscriminating males can prevent interspecific divergence, or even cause convergence, in traits used to recognize competitors. We then test the model in a genus of visually orienting insects and show that, as predicted by the model, differences between species pairs in the level of reproductive interference, which is causally related to species differences in female coloration, are strongly predictive of the current level of interspecific aggression. Interspecific reproductive interference is very common and we discuss how it may account for the persistence of interspecific aggression in many taxonomic groups.  相似文献   

11.
We investigated patterns of intergroup relationships in western black-and-white colobus, Colobus polykomos, in Taï National Park, Côte d'Ivoire, between 1993 and 1999. They live in one-male multifemale units, and demonstrate male dispersal and occasional dispersal by females. Solitary males and all-male bands are absent or very rare. Our aim was to investigate the function of female and male aggression during intergroup interactions. The species is particularly interesting because, in contrast to predictions from socioecological models, female aggression occurs during intergroup interactions in combination with female dispersal. Home ranges of neighboring groups overlapped considerably and groups lacked an area of exclusive access. Intergroup interactions occurred once every 6.6 observation days. Encounters were either peaceful (12%), or involved displays and threats (25%) or chases and fights (63%). Females interacted in 74% and males in 98% of aggressive intergroup encounters. We found little to no indication that male and female aggression correlated with the presence of food, importance of a location, or presence of infants or receptive females. However, females were more often aggressive during the months when the group depended strongly on seeds from Pentaclethra macrophylla. We also observed forays by males to other groups. Forays occurred on average once every 20 observation days. In 75% of the forays, the intruding male chased members of the target group. In 25% of the forays 1–3 females joined their male but females never attacked the target group. Our main study group was the target of such forays significantly more often when young infants were present in the group than when not. We conclude that female aggression between groups was related to food procurement and that male forays might be related to infanticide.  相似文献   

12.
Interspecific aggression, similar to intergroup conspecific aggression, has been observed in a variety of taxa. The dominant group or individual is determined by multiple aggressive events and can be influenced by the size, age, or group size of the participating individuals. Interspecific aggression between Atlantic bottlenose (Tursiops truncatus) and spotted (Stenella frontalis) dolphins, both resident and sympatric to Little Bahama Bank, the Bahamas has been consistently observed for over two decades. However, it is unclear whether one species is more dominant and little is known about the factors that influence the progression of aggression. For this study, underwater video recordings of 32 aggressive encounters composed of 451 aggressive behavioural events were analysed over a 12‐yr period (1993–2004). These were used to describe the interspecific aggression observed and quantify which factors (the species and age class of the participants or the group size and behaviour of spotted dolphin groups) had the strongest impact on the progression and outcome of aggression. Over the long term, interspecific aggression was bidirectional with neither species being more dominant. During a single encounter, spotted dolphin group synchrony had the strongest impact on the dynamic of aggression, specifically impacting which group (1) initiated aggression, (2) the direction of aggression and (3) the occurrence of dynamic shifts or dominance reversals. This is the first study to quantify the dynamic of aggression for this population, to document bidirectional aggression and dynamic shifts during long‐term interspecific aggression in free‐ranging delphinids, and this study quantifies the role of synchrony during interspecific aggression using underwater observations.  相似文献   

13.
Adults of many closely related coral reef fish species are segregated along gradients of depth or habitat structure. Both habitat selection by new settlers and subsequent competitive interactions can potentially produce such patterns, but their relative importance is unclear. This study examines the potential roles of habitat selection and aggression in determining the spatial distribution of adults and juveniles of four highly aggressive damselfishes at Lizard Island, northern Great Barrier Reef. Dischistodus perspicillatus, D. prosopotaenia, D. melanotus, and D. pseudochrysopoecilus maintain almost non-overlapping distributions across reef zones, with adults of one species dominating each reef zone. Juveniles exhibit slightly broader distributional patterns suggesting that subsequent interactions reduce overlap among species. Although habitat choice experiments in aquaria suggest that associations between juveniles and substrata types in the field are partly due to habitat selection, large overlaps in the use of substrata by the different species were also found, suggesting that substratum selection alone is insufficient in explaining the discrete spatial distributions of adults. The strength of aggressive interactions among all four species was tested by a "bottle" experiment, in which an adult or juvenile of each species was placed in the territories of adult fish on the reef. The greatest levels of interspecific aggression were directed against adults and juveniles of neighbouring species. The highest levels of aggression were associated with species exhibiting the greatest levels of overlap in resource use. Evidently both habitat selection and interspecific aggression combine to determine the adult distributions of these species.  相似文献   

14.
James W. Popp 《Zoo biology》1984,3(3):211-219
Mixed ungulate species exhibits are often plagued with difficulties stemming from interspecific aggression. Several aspects of interspecific aggression were investigated in mixed ungulate species exhibits at the Audubon Zoolnogical Garden in New Orleans, Louisiana. Success of a mixed species exhibit was found to be correlated with the rate of male-initiated aggression, but not with the total rate of aggression. Neither taxonomic relatedness nor size difference between the species could be used to predict the success of a species pairing. The total rate of aggression in an exhibit was related to taxonomic relatedness, aggression being highest between distantly related species. Increases in aggression were triggered by births, mating activity, and introduction of an animal to an exhibit.  相似文献   

15.
Variation in aggression among species can be due to a number of proximate and ultimate factors, leading to patterns of divergent and convergent evolution of behavior among even closely related species. Caribbean Anolis lizards are well known for their convergence in microhabitat use and morphology, but they also display marked convergence in social behavior and patterns of aggression. We studied 18 Anolis species across six ecomorphs on four different Caribbean islands to test four main hypotheses. We hypothesized that species differences in aggression would be due to species differences in circulating testosterone (T), a steroid hormone implicated in numerous studies across vertebrate taxa as a primary determinant of social behavior; more aggressive species were expected to have higher baseline concentrations of T and corticosterone. We further hypothesized that low-T species would increase T and corticosterone levels during a social challenge. Within three of the four island assemblages studied we found differences in T levels among species within an island that differ in aggression, but in the opposite pattern than predicted: more aggressive species had lower baseline T than the least aggressive species. The fourth island, Puerto Rico, showed the pattern of baseline T levels among species we predicted. There were no patterns of corticosterone levels among species or ecomorphs. One of the two species tested increased T in response to a social challenge, but neither species elevated corticosterone. Our results suggest that it is possible for similarities in aggression among closely related species to evolve via different proximate mechanisms.  相似文献   

16.
Summary Food niche relationships among four sympatric Sceloporus species were studied in the Sierra Madre Occidental, N.E. Mexico. Although some very high food-niche overlap values were observed, this does not prove that interspecific competition is currently important in organizing this lizard assemblage. Moreover, explaining habitat segregation among the coexisting species as an ecological result of interspecific competitive pressure is unlikely: the overall ecology and behaviour of these species is too much dependent on their microhabitat or substrate specialization to allow such an exclusive interpretation. Thus, this community is probably not mainly organized by species interactions but rather through the specific ecological needs of each species.  相似文献   

17.
Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five “species pairs”), or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity). Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species’ relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.  相似文献   

18.
Physical aggression among nestmates is commonly observed in animal societies like Polistes paper wasps, where it can be used to suppress worker reproduction. There is no consensus about how individuals use aggression in contexts other than reproduction. In order to clarify this topic, the regulation of worker-foraging behavior was studied in the Neotropical eusocial wasp Polistes versicolor. By experimentally manipulating food demand, we found evidence that aggression is used as a decentralized mechanism of regulating foraging, because after food supplementation: (1) aggression levels and foraging rates decreased and (2) aggression received and exhibited by foragers and non-foragers decreased. P. versicolor can use aggression in both reproductive and foraging contexts. The conclusion is drawn that this species is a good model for understanding how individuals differ from aggression related to reproduction and foraging, which would allow understanding of the evolutionary shift in the function of aggression from being the mechanism of reproductive control to being co-opted for the decentralized, self-organized regulation of worker-foraging.  相似文献   

19.
Interspecific aggression amongst nonhuman primates is rarely observed and has been mostly related to scenarios of resource competition. Interspecific infanticide is even rarer, and both the ultimate and proximate socio‐ecological factors explaining this behavior are still unclear. We report two cases of interspecific infanticide and five cases of interspecific infant‐directed aggression occurring in a well‐habituated primate community living in a fragmented landscape in Colombia. All cases were initiated by male brown spider monkeys (Ateles hybridus) and were directed toward infants of either red howler monkeys (Alouatta seniculus: n = 6 cases) or white‐fronted capuchins (Cebus albifrons: n = 1 case). One individual, a subadult spider monkey male, was involved in all but one case of interspecific infanticide or aggression. Other adult spider monkeys participated in interspecific aggression that did not escalate into potentially lethal encounters. We suggest that competition for food resources and space in a primate community living in high population densities and restricted to a forest fragment of ca. 65 ha might partly be driving the observed patterns of interspecific aggression. On the other hand, the fact that all but one case of interspecific infanticide and aggression involved the only subadult male spider monkey suggests this behavior might either be pathological or constitute a particular case of redirected aggression. Even if the underlying principles behind interspecific aggression and infanticide are poorly understood, they represent an important factor influencing the demographic trends of the primate community at this study site. Am. J. Primatol. 74:990‐997, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Intraspecific aggression is known to be an important behavior structuring bird communities, but interspecific aggression has been studied less frequently. Because of a high degree of similarity in foraging niches, I hypothesized that American redstarts (Setophaga ruticilla) and Adelaide's warblers (S. adelaidae) would interact aggressively during the non‐breeding season in southwest Puerto Rico. I used a crossover experiment to determine whether these species were aggressive to heterospecifics, presenting decoys and vocalizations of these two species, along with a control, to individuals and observing their vocal and physical responses. However, the study used only a single playback and decoy for each species, limiting the generality of the conclusions. Both species responded aggressively to decoys of conspecifics and heterospecifics, while no individual responded to the control. Responses to conspecifics were stronger than responses to heterospecifics as hypothesized, although the differences were significant only in Adelaide's warblers. The interspecific aggression observed in this study, combined with previous studies showing a high degree of overlap in space use and foraging niches and probable food limitation, strongly suggests that these species are competing for food during the non‐breeding season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号