首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ingouff M  Jullien PE  Berger F 《The Plant cell》2006,18(12):3491-3501
Double fertilization of the female gametophyte produces the endosperm and the embryo enclosed in the maternal seed coat. Proper seed communication necessitates exchanges of signals between the zygotic and maternal components of the seed. However, the nature of these interactions remains largely unknown. We show that double fertilization of the Arabidopsis thaliana female gametophyte rapidly triggers sustained cell proliferation in the seed coat. Cell proliferation and differentiation of the seed coat occur in autonomous seeds produced in the absence of fertilization of the multicopy suppressor of ira1 (msi1) mutant. As msi1 autonomous seeds mostly contain autonomous endosperm, our results indicate that the developing endosperm is sufficient to enhance cell proliferation and differentiation in the seed coat. We analyze the effect of autonomous proliferation in the retinoblastoma-related1 (rbr1) female gametophyte on seed coat development. In contrast with msi1, supernumerary nuclei in rbr1 female gametophytes originate mainly from the endosperm precursor lineage but do not express an endosperm fate marker. In addition, defects of the rbr1 female gametophyte also reduce cell proliferation in the ovule integuments before fertilization and prevent further differentiation of the seed coat. Our data suggest that coordinated development of the seed components relies on interactions before fertilization between the female gametophyte and the surrounding maternal ovule integuments and after fertilization between the endosperm and the seed coat.  相似文献   

2.
Phillips AR  Evans MM 《Genetics》2011,187(4):1085-1097
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.  相似文献   

3.
4.
Genetic analysis of female gametophyte development and function.   总被引:13,自引:1,他引:12       下载免费PDF全文
The female gametophyte is an absolutely essential structure for angiosperm reproduction. It produces the egg cell and central cell (which give rise to the embryo and endosperm, respectively) and mediates several reproductive processes including pollen tube guidance, fertilization, the induction of seed development, and perhaps also maternal control of embryo development. Although much has been learned about these processes at the cytological level, specific molecules mediating and controlling megagametogenesis and female gametophyte function have not been identified. A genetic approach to the identification of such molecules has been initiated in Arabidopsis and maize. Although genetic analyses are still in their infancy, mutations affecting female gametophyte function and specific steps of megagametogenesis have already been identified. Large-scale genetic screens aimed at identifying mutants affecting every step of megagametogenesis and female gametophyte function are in progress; the characterization of genes identified in these screens should go a long way toward defining the molecules that are required for female gametophyte development and function.  相似文献   

5.
There are four genetically distinct components in the developing seeds of flowering plants: maternal sporophyte, gametophyte, endosperm, and embryo. Each component can potentially influence the quantity or quality of nutrients provided to the embryo of its seed, thereby reducing the amount available to embryos in other seeds of that plant. The theory of kin selection predicts that each component will be selected to favor its own embryo over the other embryos to the extent that it is more closely related to its own. Under this criterion, an embryo should be selected to try to acquire more nutrients than the endosperm should be selected to provide, the endosperm should try to supply more than the gametophyte should, and the gametophyte more than the parent sporophyte. Evidence for this conflict of interests is found in the higher frequency of endopolyploidy, nutrient-absorbing haustoria, and food storage tissues in the embryo and endosperm than in the gametophyte of maternal tissues.This theory also suggests how the gametophyte, which is the nurse tissue of gymnosperm seeds, was displaced from this role in the flowering plants by an endosperm initiated by a secondary fertilization. “Neoteny” in the pro-angiosperms created conditions in which (1) an endosperm initiated by double fertilization would be more closely related to the embryo than is the gametophyte and (2) the endosperm would be formed early enough to be of significant aid to the embryo.If this theory is correct it (1) requires a different approach to the study of seed morphology and physiology, (2) increases the plausibility of arguments that flowering plants are a polyphyletic group, (3) provides evidence that parents cannot always control the outcome of conflict with their offspring, and (4) forges a conceptual link in our understanding of the evolution of social interactions in plants and animals.  相似文献   

6.
The formation of viable angiosperm seeds involves the co-ordinated growth and development of three genetically distinct organisms, the maternally derived seed coat and the zygotic embryo and endosperm. The physical relationships of these tissues are initially established during the specification and differentiation of the female gametophyte within the tissues of the developing ovule. The molecular programmes implicated in both ovule and seed development involve elements of globally important pathways (such as auxin signalling), as well as ovule- and seed-specific pathways. Recurrent themes, such as the precisely controlled death of specific cell types and the regulation of cell–cell communication and nutrition by the selective establishment of symplastic and apoplastic barriers, appear to play key roles in both pre- and post-fertilization seed development. Much of post-fertilization seed growth occurs during a key developmental window shortly after fertilization and involves the dramatic expansion of the young endosperm, constrained by surrounding maternal tissues. The complex tissue-specific regulation of carbohydrate metabolism in specific seed compartments has been shown to provide a driving force for this early seed expansion. The embryo, which is arguably the most important component of the seed, appears to be only minimally involved in early seed development. Given the evolutionary and agronomic importance of angiosperm seeds, the complex combination of communication pathways which co-ordinate their growth and development remains remarkably poorly understood.  相似文献   

7.
五唇兰雌配子体发育和胚胎发生的研究   总被引:11,自引:2,他引:11  
五唇兰的胚珠倒生型,具薄珠心,两层珠被。胚囊发育为双孢子葱型,成熟胚囊8核。从传粉到受精约50d,正常双受精。胚具5-6细胞的胚柄,种子成熟时胚柄及胚乳核消失,成熟种子只具单层细胞的种皮和一个未分化的珠珠形胚。  相似文献   

8.
Endosperm gene imprinting and seed development   总被引:4,自引:0,他引:4  
Imprinting occurs in the endosperm of flowering plants. Endosperm, produced by fertilization of the central cell in the female gametophyte, is essential for embryo and seed development. Several imprinted genes play an important role in endosperm development. The mechanism of gene imprinting involves DNA methylation and histone modification. DNA methylation is actively removed at the imprinted alleles to be activated. Histone methylation mediated by the Polycomb group complex provides another layer of epigenetic regulation at the silenced alleles. Endosperm gene imprinting can be uncoupled from seed development when fertilization of the central cell is prevented. Imprinting may be a mechanism to ensure fertilization of the central cell thereby preventing parthenogenic development of the endosperm.  相似文献   

9.
张美善  刘宝 《植物学报》2012,47(2):101-110
被子植物的种子发育从双受精开始, 产生二倍体的胚和三倍体的胚乳。在种子发育和萌发过程中, 胚乳向胚组织提供营养物质, 因此胚乳对胚和种子的正常生长发育至关重要。开花植物发生基因组印迹的主要器官是胚乳。印迹基因的表达受表观遗传学机制的调控, 包括DNA甲基化和组蛋白H3K27甲基化修饰以及依赖于PolIV的siRNAs (p4-siRNAs)调控。基因组印迹的表观遗传学调控对胚乳的正常发育和种子育性具有不可或缺的重要作用。最新研究显示, 胚乳的整个基因组DNA甲基化水平降低, 而且去甲基化作用可能源于雌配子体的中央细胞。该文综述了种子发育的表观遗传学调控机制, 包括基因组印迹机制以及胚乳基因组DNA甲基化变化研究的最新进展。  相似文献   

10.
The development of the anther wall follows Basic-type. The cytokinesis at the time of pollen mother cell meiosis conforms to successive type. The arrangement of the microspores in the tetrad is referred to isobilateral. The primary wall between the generative cell and the vegetative cell is callose. The callose wall is easily detected under the fluorescence microscope. The mature pollen grain is 2-celled type. The ovule is bitegminous, tenui-nucellar and anatropous. The development of the female gametophyte follows Fritillaria-type. The mature embryo sac. consists of the six cells including the seven nuclei. The fertilization is referred to the premitotic syngamy type. The fusion of the female and male nucleoli is not observed at the end of the fertilization. The division of the primary endosperm nucleus is earlier than that of the zygote. The development of the endosperm is referred to nuclear type. The division of the zygote is transverse of longitudinal, the development of the embryo conforms to Onagradtype. When the seed is mature, the embryo is at the proembryo stage without differentiation and the endosperm cells are not absorbed.  相似文献   

11.
Cardiopteris (Cardiopteridaceae), a twining herb of two or three species distributed from Southeast Asia to Northern Australia, requires an embryological study for better understanding of its reproductive features. The present study of C. quinqueloba showed that the ovule and seed development involves a number of unusual structures, most of which are unknown elsewhere in angiosperms. The ovule pendant from the apical placenta is straight (not orthotropous), ategmic, and tenuinucellate, developing a monosporic seven-celled/eight-nucleate female gametophyte with an egg apparatus on the funicular side. Fertilization occurs by a pollen tube entering from the funicular side, resulting in a zygote on the funicular side. The endosperm is formed by the cell on the funicular side in the two endosperm cell stage. While retaining a (pro)embryo/endosperm as it is, the raphe (differentiating late in pre-fertilization stages) elongates toward the antiraphal side during post-fertilization stages, resulting in an anatropous seed. The two-cell-layered nucellar epidermis (belatedly forming by periclinal divisions), along with the raphe, envelops the embryo/endosperm entirely as the seed coat. The possibility was discussed that the arrested integument development triggers a series of the subsequent unusual structures of ovule and seed development. The fertilization mode in Cardiopteris underpins the hypothesis that the Polygonum?type female gametophyte comprises two four-celled archegonia.  相似文献   

12.
Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm.   总被引:11,自引:0,他引:11       下载免费PDF全文
In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin-dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals.  相似文献   

13.
14.
Grini PE  Jürgens G  Hülskamp M 《Genetics》2002,162(4):1911-1925
The female gametophyte of higher plants gives rise, by double fertilization, to the diploid embryo and triploid endosperm, which develop in concert to produce the mature seed. What roles gametophytic maternal factors play in this process is not clear. The female-gametophytic effects on embryo and endosperm development in the Arabidopsis mea, fis, and fie mutants appear to be due to gametic imprinting that can be suppressed by METHYL TRANSFERASE1 antisense (MET1 a/s) transgene expression or by mutation of the DECREASE IN DNA METHYLATION1 (DDM1) gene. Here we describe two novel gametophytic maternal-effect mutants, capulet1 (cap1) and capulet2 (cap2). In the cap1 mutant, both embryo and endosperm development are arrested at early stages. In the cap2 mutant, endosperm development is blocked at very early stages, whereas embryos can develop to the early heart stage. The cap mutant phenotypes were not rescued by wild-type pollen nor by pollen from tetraploid plants. Furthermore, removal of silencing barriers from the paternal genome by MET1 a/s transgene expression or by the ddm1 mutation also failed to restore seed development in the cap mutants. Neither cap1 nor cap2 displayed autonomous seed development, in contrast to mea, fis, and fie mutants. In addition, cap2 was epistatic to fis1 in both autonomous endosperm and sexual development. Finally, both cap1 and cap2 mutant endosperms, like wild-type endosperms, expressed the paternally inactive endosperm-specific FIS2 promoter GUS fusion transgene only when the transgene was introduced via the embryo sac, indicating that imprinting was not affected. Our results suggest that the CAP genes represent novel maternal functions supplied by the female gametophyte that are required for embryo and endosperm development.  相似文献   

15.
Seed development in flowering plants is a paradigm for the coordination of different tissues during organ growth. It requires a tight interplay between the two typically sexually produced structures: the embryo, developing from the fertilized egg cell, and the endosperm, originating from a fertilized central cell, along with the surrounding maternal tissues. Little is known about the presumptive signal transduction pathways administering and coordinating these different tissues during seed growth and development. Recently, a new signal has been identified emanating from the fertilization of the egg cell that triggers central cell proliferation without prior fertilization. Here, we demonstrate that there exists a large natural genetic variation with respect to the outcome of this signaling process in the model plant Arabidopsis thaliana. By using a recombinant inbred line population between the two Arabidopsis accessions Bayreuth-0 and Shahdara, we have identified two genetic components that influence the development of unfertilized endosperm. Exploiting this natural variation, we could further dissect the interdependence of embryo and endosperm growth during early seed development. Our data show an unexpectedly large degree of independence in embryo growth, but also reveal the embryo's developmental restrictions with respect to endosperm size. This work provides a genetic framework for dissection of the interplay between embryo and endosperm during seed growth in plants.  相似文献   

16.
  1. The future of the seed is partly predetermined by events (flower formation, flowering, nutrient flow from mother plant, etc.) preceding fertilization and the formation of the gametophyte.
  2. The environmental conditions under which the seed matures affect its final physiological constitution. This faet has mostly been neglected by seed physiologists.
  3. It is not known how far the triantic nature of the diaspore (seed coat, pulp, etc., 2n of mother plant, embryon of δ +n of Φ, endosperm 2n of Φ +n of δ) affects seed development and germination.
  4. The integuments of the ovules of some species have stomata. It is not known if they are functional in gas exchange or are constitutional non-functioning relics.
  5. The causes of the growth-degeneration pattern of the nucellus are unknown.
  6. During the development of the megaspore mother cell into the mature embryo sac dramatic cellular ultrastructural changes take place. This probably signifies a “change of guards” during which the gametophyte is freed from part of the controls by the ultrastructural units of the mother plant, preparing the ground after fertilization for a new, genetically independent sporophyte.
  7. Upon closer examination, the seemingly simple processes of fertilization and embryogenesis, as described in textbooks, turn out to be very complex and full of problems. Is the role each male nucleus plays preordained or is it left to chance which male nucleus goes where? What causes the degeneration of the synergids and of the vegetative nucleus, and what protects the other two male nuclei from a similar fate? Which ultrastructural organelles are carried by the generative nuclei into their respective receptor cells and what is their role in them? Why do zygotes in some species develop after fertilization immediately into an embryo whereas in other species the zygote remains dormant for some time? What causes the polarity of the egg cell which, after fertilization, divides into one developmentally most active apical cell (giving rise to the embryo) and into another “lazy” basal cell which develops into the suspensor of “unknown function?”
  8. In the source-sink relationship between photosynthesizing organs and the maturing seed there is one point at which the photosynthates pass from symplast to apoplast to symplast. The mechanism involved is largely unknown as well as the effect which environmental conditions have on this transport.
  相似文献   

17.
We isolated mutations in Arabidopsis to understand how the female gametophyte controls embryo and endosperm development. For the DEMETER (DME) gene, seed viability depends only on the maternal allele. DME encodes a large protein with DNA glycosylase and nuclear localization domains. DME is expressed primarily in the central cell of the female gametophyte, the progenitor of the endosperm. DME is required for maternal allele expression of the imprinted MEDEA (MEA) Polycomb gene in the central cell and endosperm. Ectopic DME expression in endosperm activates expression of the normally silenced paternal MEA allele. In leaf, ectopic DME expression induces MEA and nicks the MEA promoter. Thus, a DNA glycosylase activates maternal expression of an imprinted gene in the central cell.  相似文献   

18.
Over the course of maize evolution, domestication played a major role in the structural transition of the vegetative and reproductive characteristics that distinguish it from its closest wild relative, Zea mays subsp. parviglumis (Balsas teosinte). Little is known, however, about impacts of the domestication process on the cellular features of the female gametophyte and the subsequent reproductive events after fertilization, even though they are essential components of plant sexual reproduction. In this study, we investigated the developmental and cellular features of the Balsas teosinte female gametophyte and early developing seed in order to unravel the key structural and evolutionary transitions of the reproductive process associated with the domestication of the ancestor of maize. Our results show that the female gametophyte of Balsas teosinte is a variation of the Polygonum type with proliferative antipodal cells and is similar to that of maize. The fertilization process of Balsas teosinte also is basically similar to domesticated maize. In contrast to maize, many events associated with the development of the embryo and endosperm appear to be initiated earlier in Balsas teosinte. Our study suggests that the pattern of female gametophyte development with antipodal proliferation is common among species and subspecies of Zea and evolved before maize domestication. In addition, we propose that the relatively longer duration of the free nuclear endosperm phase in maize is correlated with the development of a larger fruit (kernel or caryopsis) and with a bigger endosperm compared with Balsas teosinte.  相似文献   

19.
Huh JH  Bauer MJ  Hsieh TF  Fischer RL 《Cell》2008,132(5):735-744
Gene imprinting, the differential expression of maternal and paternal alleles, independently evolved in mammals and in flowering plants. A unique feature of flowering plants is a double-fertilization event in which the sperm fertilize not only the egg, which forms the embryo, but also the central cell, which develops into the endosperm (an embryo-supporting tissue). The distinctive mechanisms of gene imprinting in the endosperm, which involve DNA demethylation and histone methylation, begin in the central cell and sperm prior to fertilization. Flowering plants might have coevolved double fertilization and imprinting to prevent parthenogenetic development of the endosperm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号