首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A two-component cloning system to transfer foreign DNA into plants was derived from the octopine Ti plasmid pTiB6S3. pGV2260 is a non-oncogenic Ti plasmid from which the T-region is deleted and substituted by pBR322. pGV831 is a streptomycin-resistant pBR325 derivative that contains a kanamycin resistance marker gene for plant cells and a site for cloning foreign genes between the 25-bp border sequences of the octopine T-region. Conjugative transfer of pGV831 derivatives to Agrobacterium and cointegration by homologous recombination between the pBR322 sequences present on pGV831 and pGV2260, can be obtained in a single step. Strains carrying the resulting cointegrated plasmids transfer and integrate T-DNA into the genome of tobacco protoplasts, and transformed tobacco calli are readily selected as resistant to kanamycin. Intact plants containing the entire DNA region between the T-DNA borders have been regenerated from such clones. In view of these properties we present pGV831 and its derivatives as vectors for efficient integration of foreign genes into plants.  相似文献   

2.
An intermediate vector pSSJ1 was constructed by cloning a hph gene and a gus gene with catalase intron in pGV1500. pSSJ1 was cointegrated into a disarmed receptor Ti plasmid pGV2260 harboured in Agrobacterium tumefaciens strain C58C1RifR. The resulting A. tumefaciens strain C58C1RifR (pGV2260::pSSJ1) stably transformed Oryza sativa L. cv Pusa Basmati 1 scutellum-derived calli at 26% frequency. Introduction of the plasmid pSSJ3 (3′virB, virG and virC of pTiB0542) into A. tumefaciens C58C1RifR (pGV2260::pSSJ1) resulted in the elevation of acetosyringone-induced T -strand accumulation. Rice transformation efficiency of the cointegrate plasmid pGV2260::pSSJ1 increased from 26% to 33% in the presence of pSSJ3 and from 26% to 35% in the presence of pToK47 (complete virB, virG and virC). T-DNA integration in To plants was confirmed by Southern hybridization analysis. Inheritance analysis of the T0 plants with single-copy T-DNA insertions revealed segregation of hygromycin resistance in 3:1 ratio. The feasibility of rice transformation with a cointegrate Ti plasmid vector is clearly established.  相似文献   

3.
A chimeric DNA construction having nopaline synthase promoter, coding sequences of neomycin phosphotransferase gene conferring resistance to antibiotic kanamycin and OCS (octopine synthase) polyadenylation sequences bracketed by T-DNA ends was transferred to tobacco. Leaf discs were infected withA. tumefaciens containing disarmed, cointegrate plasmid pGV3850:: 1103 and allowed to form a callus in the presence of kanamycin. Shoots regenerated from infected leaf discs either through the callus or arising directly were further selected for their ability to root in kanamycin-containing media. Among the nine transgenic plants that were progeny tested, the transferred bacterial gene segregated as monohybrid ratio (3 KanR: 1 Kans) in seven. Segregation data of two plant progenies indicated the presence of two independent loci of KanR DNA insertion (15 KanR: 1 Kan s ). Back-cross segregation data were consistent with the monohybrid or independent assortment of duplicate factors. Thus in the two cases, a minimum independent integration of two copies of T-DNA each with a KanR marker is inferred.  相似文献   

4.
烟草花叶病毒外壳蛋白嵌合基团的重组   总被引:2,自引:2,他引:0  
普通烟草花叶病毒外壳蛋白基因已和花椰菜花叶病毒35S启动子及3′未端重组成嵌合基因。在连接了用于筛选在土壤杆菌中导入外源基因的新霉素磷酸转移酶Ⅰ(NPT Ⅰ)基因和用于筛选在植物细胞中导入外源基因的嵌合的新霉素磷酸转移酶Ⅱ(NPT Ⅱ)基因后,已导入一个去致瘤基因的Ti载体T-DNA区中。这种在Ti载体T-DNA区带嵌合的烟草花叶病毒外壳蛋白基因的土壤杆菌菌株,可以用来转化植物。观察在转化植物中表达的这种外壳蛋白能否延缓或减轻烟草花叶病毒对它们的危害。  相似文献   

5.
Chimeric genes as dominant selectable markers in plant cells   总被引:41,自引:15,他引:26       下载免费PDF全文
Opine synthases are enzymes produced in dicotyledonous plants as the result of a natural gene transfer phenomenon. Agrobacteria contain Ti plasmids that direct the transfer, stable integration and expression of a number of genes in plants, including the genes coding for octopine or nopaline synthase. This fact was used as the basis for the construction of a number of chimeric genes combining the 5' upstream promoter sequences and most of the untranslated leader sequence of the nopaline synthase (nos) gene with the coding sequence of two bacterial genes: the aminoglycoside phosphotransferase (APH(3')II) gene of Tn5 and the methotrexate-insensitive dihydrofolate reductase (DHFR MtxR) of the R67 plasmid. The APH(3')II enzyme inactivates a number of aminoglycoside antibiotics such as kanamycin, neomycin and G418. Kanamycin, G418 and methotrexate are very toxic to plants. The chimeric NOS-APH(3')II gene, when transferred to tobacco cells using the Ti plasmid as a gene vector, was expressed and conferred resistance to kanamycin to the plant cells. Kanamycin-resistant tobacco cells were shown to contain a typical APH(3')II phosphorylase activity. This chimeric gene can be used as a potent dominant selectable marker in plants. Similar results were also obtained with a NOS-DHFR MtxR gene. Our results demonstrate that foreign genes are not only transferred but are also functionally expressed when the appropriate constructions are made using promoters known to be active in plant cells.  相似文献   

6.
A Ti plasmid mutant was constructed in which all the on-cogenic functions of the T-DNA have been deleted and replaced by pBR322. This Ti plasmid, pGV3850, still mediates efficient transfer and stabilization of its truncated T-DNA into infected plant cells. Moreover, integration and expression of this minimal T-DNA in plant cells does not interfere with normal plant cell differentiation. A DNA fragment cloned in a pBR vector can be inserted in the pGV3850 T-region upon a single recombination event through the pBR322 region of pGV3850 producing a co-integrate useful for the transformation of plant cells. Based upon these properties, pGV3850 is proposed as an extremely versatile vector for the introduction of any DNA of interest into plant cells.  相似文献   

7.
Summary The maize transposable element Ac has been introduced into potato via the T-DNA (transferred DNA) of Agrobacterium tumefaciens. Ac was inserted within the untranslated leader region of a neomycin phosphotransferase II (NPT-II) gene such that excision restored NPT-II activity. Two approaches to monitor Ac excision were used. (i) Using an Agrobacterium strain harbouring plasmid pGV3850::pKU3, leaf discs were selected on kanamycin (Km) after exposure to Agrobacterium. (ii) Using a strain containing plasmid pGV3850HPT::pKU3, the leaf discs were selected on hygromycin (Hm) and the resulting shoots were checked for NPT-II expression. Thirteen kanamycin resistant shoots transformed with pGV3850::pKU3 were isolated, suggesting that Ac had excised from the NPT-II gene. Out of 43 hygromycin resistant shoots transformed with pGV3850HPT::pKU3, 22 expressed the NPT-II gene, indicating that Ac had undergone excision in approximately 50% of the hygromycin resistant shoots. Southern analysis revealed that all kanamycin resistant plants contained the DNA restriction fragments expected when Ac excises from the NPT-II gene. The presence of Ac at new locations within the genomic DNA of several transformants was also detected.  相似文献   

8.
Proteinase inhibitor genes are expressed in solanaceous and leguminous plants following wounding of the foliage by mechanical methods. Previous studies have shown that a cloned proteinase inhibitor II-chloramphenicol acetyl transferase (pin2-CAT) chimeric gene is regulated in a wound-inducible manner in transgenic plants. In this study, we analyzed transgenic plant tissues for expression of the pin2-CAT gene in response to various plant hormones. We found that CAT activity was induced in tobacco (Nicotiana tabacum) callus incubated in the absence of any plant growth regulators. Addition of growth regulators to the medium thus permitted us to measure the effects of these substances on the activity of the pin2-CAT gene construction. Cytokinin (BAP) and ethylene (ethophon) even at low concentrations stimulated the expression of CAT activity by 25 to 50%. Abscisic acid at concentrations up to 4.4 × 10−5 molar had no effect upon CAT activity, but increasing auxin (naphthalene acetic acid) levels completely inhibited the synthesis of CAT protein. Gibberellic acid had little effect except at very high concentration (2.9 × 105 molar). The kinetics of activation of the pin2-CAT gene were quite long (5 to 7 days) when unwounded calli were plated on media lacking auxin. This effect was documented for calli derived from several transformed plants, containing the full, chimeric pin2-CAT (pRT45) gene. In addition, calli from tissues transformed with wild-type vectors or from several plants transformed with pRT50 (a noninducible derivative of pRT45) were not induced by plating on media lacking auxin. Other naturally occurring and synthetic auxins had similar effects to naphthalene acetic acid in inhibiting the induction of the chimeric gene fusion. Finally, leaf discs from transformed plants were induced by incubation in MS liquid medium in the presence and absence of naphthalene acetic acid. NAA was also effective in down regulating the chimeric gene in whole plant tissues.  相似文献   

9.
We have isolated a 1.5-kb plant DNA fragment (called insert 7) from Nicotiana plumbaginifolia DNA that contains a protoplast-specific enhancer-like sequence. The presence of this sequence on a plasmid carrying a chimeric nos-npt-II gene conferring kanamycin resistance to plant cells, produces an overexpression of the npt-II gene during at least eight days after protoplast transformation. This effect on the expression of the nos promoter was independent of the orientation and was observed both on circular and linearized plasmids. On the contrary, insert 7 had no influence when present on another plasmid (in trans) in cotransformation experiments. The overexpression of the nos-npt-II gene due to the presence of insert 7 on the transforming plasmid is correlated with a higher level of synthesis of the corresponding RNA. Insert 7 did not affect the level of expression of the nos-npt-II gene in stably transformed calli, or in regenerated plants. However, the overexpression was again detected in protoplasts prepared from leaves of stably transformed plants. This 1.5-kb plant DNA fragment contains highly repetitive DNA sequences, specific to N. plumbaginifolia. However, the enhancer-like activity is localized on a 600-bp unique sequence of insert 7. Insert 7 had no detectable effect on the transient expression of another gene, the nopaline synthase gene present at a longer distance on the same plasmid.  相似文献   

10.
A method is described for the high frequency transformation of carrot proembryogenic suspension culture cells by a non-oncogenic Ti-plasmid vector (pGV3850::1103) which carried a chimaeric kanamycin resistance gene (nos-NPT-II). Plants were regenerated efficiently from transformed material by somatic embryogenesis in the presence of kanamycin. Transformed tissues expressed readily detectable levels of both NPT-II and nopaline. NPT-II could be detected in total protein extracts by Western blotting. This analysis indicated that NPT-II was produced as a single, full length polypeptide. The T-DNA copy number in individually selected transformants was analysed by Southern blotting and ranged from 1–8 per diploid genome. The copy number and organization of the T-DNA was retained in plants regenerated from these transformants by somatic embryogenesis. These data suggested a clonal origin for the selected kanamycin resistant colonies. NPT-II expression levels appeared to be directly related to gene dosage.  相似文献   

11.
Hypocotyl protoplasts of German winter oilseed, rape (Brassica napus) lines of double-low quality were transformed using Agrobacterium tumefaciens harbouring pGV 38501103 neo (dimer) containing chimaeric kanamycin resistance reporter genes. Transformed protoplasts were regenerated to fertile and phenotypically normal plants. Transformation was confirmed by kanamycin resistance, nopaline production, neomycinphosphotransferase II activity, and Southern blot hybridization. Seed progeny from self-pollinated transformants expressed the introduced kanamycin resistance as a Mendelian trait.Abbreviations BAP 6-benzylaminopurine - Cf ClaforanR - 2.4D 2,4-dichlorophenoxy acetic acid - Km kanamycin - MS Murashige and Skoog (1962) - NAA -naphthalene acetic acid - NPT II neomycinphosphotransferase - npt II neomycinphosphotransferase II gene - NOS nopaline synthase - nos nopaline synthase gene - ocs octopine synthase gene - IAA indole-3-acetic acid  相似文献   

12.
13.
High efficiency transformation of cultured tobacco cells   总被引:36,自引:6,他引:30       下载免费PDF全文
An G 《Plant physiology》1985,79(2):568-570
Tobacco calli were transformed at levels up to 50% by cocultivation of tobacco cultured cells with Agrobacterium tumefaciens harboring the binary transfer-DNA vector, pGA472, containing a kanamycin resistance marker. Transformation frequency was dependent on the physiological state of the tobacco cells, the nature of Agrobacterium strain and, less so, on the expression of the vir genes of the tumor-inducing plasmid. Maximum transformation frequency was obtained with exponentially growing plant cells, suggesting that rapid growth of plant cells is an essental factor for efficient transformation of higher plants.  相似文献   

14.
The genetic constructions based on integrative vector pGV3850 were used to introduce bacterial genes xyl and T-cyt into potato cells. The transformation was carried out using the leaf-disc method with modifications. A special system for obtaining regenerants from explants of potato in vitro plants or calli has been designed that permitted the selection of transgenic shoots. The presence of the genes in potato genome has been proved by testing the NPTII and glucoisomerase activities. The transgenic plants expressing T-cyt gene differed from the wild type in sharp decrease of the apical dominance.  相似文献   

15.
Successful transformation of plant cells has been obtained utilizing vectors and DNA delivery methods derived from the plant pathogen, Agrobacterium tumefaciens. This soil bacterium is capable of transferring a DNA segment (T‐DNA), located between specific nucleotide border sequences, from its large tumor inducing (Ti) plasmid into the nuclear DNA of infected plant cells. The exploitation of the Agrobacterium/Ti plasmid system for plant cell transformation has been facilitated by (1) the construction of modified Agrobacterium strains in which the genes responsible for pathogenicity have been deleted; (2) the design of intermediate vectors containing selectable drug markers for introducing foreign genes into the Ti plasmid and subsequently into plant cells; and (3) the development of efficient in vitro methods for transforming plant cells and tissues with engineered Agrobacterium strains. These modifications have led to the development of a simple, efficient, and reproducible transformation system from which morphologically normal transformed plants can be readily regenerated. The foreign genes are stably maintained and expressed in the resulting plants and are inherited by progeny as typical Mendelian traits. The availability of transformation systems has already facilitated numerous studies on gene expression and regulation in plants and should eventually allow for the modification of various crop species in an agronomically significant manner. The needs and possibilities for the development of alternate vectors and transformation procedures will be discussed.  相似文献   

16.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.  相似文献   

17.
Summary Agrobacterium-mediated transformation of thin cell layer explants (Klimaszewska and Keller 1985) yielded large numbers of transgenic plants of a major Canadian rapeseed cultivar Brassica napus ssp. oleifera cv Westar. The morphology and fertility of these plants were indistinguishable from controls. The Ti plasmid vector, pGV3850 (Zambryski et al. 1983) was used as a cis vector and as a helper plasmid for the binary vector pBin19 (Bevan 1984). Selectable marker genes that conferred resistance to high levels of kanamycin (Km) on Nicotiana tabacum were less efficient in the selection of transgenic B. napus. At low levels of Km (15 g/ml) large numbers of transgenic plants (50%) were identified among the regenerants by nopaline synthase activity and several of these were confirmed by Southern blot analyses. Only a small number were resistant to higher levels of Km (80 g/ml). Preliminary analyses indicated that resistance to Km was transmitted to the selfed progeny. Chimeric chloramphenicol acetyl transferase genes were ineffective biochemical markers in transgenic B. napus.Contribution No. 1092 Plant Research Centre, Ontario, Canada  相似文献   

18.
Five plant morphoregulatory genes were isolated from the Agrobacterium tumefaciens Ti plasmid and binary plasmid vectors for plant transformation with these genes were constructed. All vectors have a similar structure with T-DNA borders, RK2 origin of replication and chimeric kanamycin resistance gene for the selection of transformed plant tissues. Over twenty vectors with single and combined morphoregulatory genes were constructed and their effects after tobacco tissue transformation studied.  相似文献   

19.
Summary A simplified protoplast regeneration system for Vigna aconitifolia was developed. A plating efficiency of 60% was obtained using mesophyll protoplasts from 10-day-old seedlings. By co-cultivation of protoplasts with Agrobacterium tumefaciens containing the Ti plasmid derivative pGV 38501103 neo kanamycin-resistant colonies were obtained; 23% of the transformed lines showed expression of the nonselected co-transferred nopaline synthase gene. Transformation was confirmed by Southern blot analysis using a nonradioactive detection system. The plant cultivar used was an important factor in determining transformation frequencies since one of the cultivars had an 85 fold higher transformation rate than the other.On deputation from: Bhabha Atomic Research Centre, Bombay, India, under the Indo-FRG Bilateral Programme  相似文献   

20.
Summary We transformed tomato (Lycopersicon esculentum L.) by using Agrobacterium rhizogenes containing two independent plasmids: the wild-type Ri-plasmid, and the vector plasmid, pARC8. The T-DNA of the vector plasmid contained a marker gene (Nos/Kan) encoding neomycin phosphotransferase which conferred resistance to kanamycin in transformed plant cells. Transgenic plants (R 0) with normal phenotype were regenerated from transformed organogenic calli by the punctured cotyledon transformation method. Southern blot analysis of the DNA from these transgenic plants showed that one or two copies of the vector plasmid T-DNA, but none of the Ri-plamid T-DNA, were integrated into the plant genome. Different transgenic plants derived from the same callus clone showed an identical DNA banding pattern, indicating the non-chimeric origin of these plants. We also transformed tomato by using A. tumefaciens strain LBA4404 containing a disarmed Ti-plasmid (pAL4404), and a vector plasmid (pARC8). Transgenic plants derived via A. tumefaciens transformation, like those via A. rhizogenes, contained one to two copies of the integrated vector T-DNA. The kanamycin resistance trait in the progeny (R 1) of most transgenic plants segregated at a ratio of 3:1, suggesting that the vector T-DNAs were integrated at a single site on a tomato chromosome. In some cases, the expression of the marker gene (Nos/Kan) seemed to be suppressed or lost in the progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号