首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial segregation of the sexes (SSS) occurs in many dioecious angiosperms, but little data are available on the fitness advantages, if any, for males and females. We examined whether reciprocally transplanted male and female seedlings of Distichlis spicata, a dioecious grass species that exhibits extreme SSS, differed in their responses to microhabitats and competition treatments. Plants grown without conspecific competitors grew equally well in both male- or female-majority habitats, suggesting that male and female plants do not have differential resource needs at the juvenile life-history stage. However, plants subject to intra-sexual competition were significantly larger than plants subject to inter-sexual competition, suggesting that niche partitioning may occur in D. spicata.  相似文献   

2.
Plants have evolved complex mechanisms to recognize and respond to the presence of neighboring plants, and the genetic identity of a neighbor has been shown to make a difference in this response. Studies have found that plants are able to differentiate among self- versus non-self and among sibling (kin) competitors. Here, we present data for the dioecious grass Distichlis spicata on seedling recognition of kin and sex. D. spicata exhibits extreme spatial segregation of the sexes (SSS) in the field, and previous work has shown that intra-sexual competition is less than inter-sexual competition in the field. In this experiment, we conducted experiments in the lab, exposing the seedlings to liquid media in which seedlings had been previously grown, rather than have the seedling physically contact one another. We found that inter-sexual interactions caused a decrease in the total dry weight and an increase in root/shoot ratio of the plants compared with intra-sexual interactions. These findings suggest that D. spicata plants can recognize and respond to plant sex and that inter-sexual competition contributes to SSS, even when additional interactions, such as mycorrhizal fungi are controlled, and physical interactions between plants are removed. In the kin recognition analysis, we found that plants paired with another plant from the same mother had significantly greater lateral root number and length than plants paired with non-kin, suggesting that in this highly clonal grass, kin recognition may be an important mechanism in competitive interactions.  相似文献   

3.

Background and Aims

Differences in competitive ability between the sexes of dioecious plants are expected as a result of allocation trade-offs associated with sex-differential reproductive costs. However, the available data on competitive ability in dioecious plants are scarce and contradictory. In this study sexual competition was evaluated using the dioecious plant Antennaria dioica in a common garden transplantation experiment.

Methods

Male and female plants were grown for 3 years either in isolation, or in competition with a plant of the same sex or the opposite sex. Flowering phenology, sexual and asexual reproduction, plant growth, nutrient content and arbuscular mycorrhizal colonization in the roots were assessed.

Key Results

Our results showed little evidence of sexual differences in competitive ability. Both sexes suffered similarly from competition, and competitive effects were manifested in some traits related to fitness but not in others. Survival was unaffected by competition, but competing plants reduced their vegetative growth and reproductive investment compared with non-competing plants. In addition, differences in sexual competitive ability were observed in relation to flowering frequency, an important life history trait not reported in previous studies.

Conclusions

The findings indicate that female and male A. dioica plants possess similar intersexual competitive abilities which may be related to the similar costs of reproduction between sexes in this species. Nevertheless, intrasexual competition is higher in females, giving support for asymmetric niche segregation between the sexes.  相似文献   

4.
Eppley SM 《Oecologia》2006,146(4):549-554
If males and females of a species differ in their effect on intraspecific competition then this can have significant ecological and evolutionary consequences because it can lead to size and mortality disparities between the sexes, and thus cause biased population sex ratios. If the degree of sexual dimorphism of competitive effect varies across environments then this variation can generate sex ratio variation within and between populations. In a California population of Distichlis spicata, a dioecious grass species exhibiting extreme within-population sex ratio variation (spatial segregation of the sexes), I evaluated the intraspecific competitive effects of male and female D. spicata seedlings in three soil types. The sex of seedlings was determined using a RAPD-PCR marker co-segregating with female phenotype. Distichlis spicata seedlings, regardless of sex, were six times larger when grown with male versus female conspecific seedlings in soil from microsites where the majority of D. spicata plants are female, and this sexual dimorphism of competitive effect was weaker or did not occur in other soil types. This study suggests that it is not just the higher costs of female versus male reproduction itself that cause spatial segregation of the sexes in D. spicata, but that differences in competitive abilities between the sexes—which occur as early as the seedling stage—can generate sex ratio variation.  相似文献   

5.
Summary Within the high arctic of Canada, Salix arctica, a dioecious, dwarf willow exhibits significant spatial segregation of the sexes. The overall sex ratio is female-biased and female plants are especially common in wet, higher nutrient, but lower soil temperature habitats. In contrast, male plants predominate in more xeric and lower nutrient habitats with higher soil temperatures that can be drought prone. Associated with the sex-specific habitat differences were differences in the seasonal and diurnal patterns of water use as measured by stomatal conductance to water vapor and the bulk tissue water relations of each gender. Within the wet habitats, female plants maintained higher rates of stomatal conductance (g) than males when soil and root temperatures were low (<4° C). In contrast, within the xeric habitats, male plants maintained higher g and had lower leaf water potentials leaf at low soil water potentials and a high leaf-to-air vapor pressure gradient (w) when compared to females. Female plants had more positive carbon isotope ratios than males indicating a lower internal leaf carbon dioxide concentration and possibly higher water use efficiency relative to males. Tissue osmotic and elastic properties also differed between the sexes. Male plants demonstrated lower tissue osmotic potentials near full tissue hydration and at the turgor loss point and a lower bulk tissue elastic modulus (higher tissue elasticity) than female plants. Males also demonstrated a greater ability to osmotically adjust on a diurnal basis than females. These properties allowed male plants to maintain higher tissue turgor pressures at lower tissue water contents and soil over the course of the day. The sex-specific distributional and ecophysiological characteristics were also correlated with greater total plant growth and higher fecundity of females in wet habitats, and males in xeric habitats respectively. The intersexual differences in physiology persisted in all habitats. These results and those obtained from growth chamber studies suggest that sex-specific differences have an underlying genetic basis. From these data we conjecture that selection maintaining the intersexual differences may be related to different costs associated with reproduction that can be most easily met through physiological specialization and spatial segregation of the sexes among habitats of differing conditions.  相似文献   

6.
7.
Summary Baccharis halimifolia (Compositae) is a dioecious shrub which grows on the upland fringe of tidal marshes along the Atlantic and Gulf Coasts of North America. We examined the responses of the two sexes to variation in nutrient and moisture availability plant density, and defoliation. By growing plants from seedlings to flowering adults under various combinations of soil type, fertilization rate and plant density, we were able to establish different rates of plant growth and mortality. Plants grown at high density and low nutrient and water supply grew the least, incurrent the most mortality and showed a male-biased sex ratio (73% male). At low density with abundant nutrients and water, plants grew more, survived well, flowered frequently, and were female-biased (75% female). Changes in sex ratio were probably the result of sex-related mortality rather than sexual lability of the seedlings. While changes in sex ratio occurred under experimental conditions in the green-house, no evidence for differences in habitat utilization between the sexes were found in the field and the sex ratio (59% female) did not vary across habitats. In the marsh habitats we sampled where water and nutrients were apparently available, there was no evidence for differential mortality between the sexes. When defoliated (75% of leaf tissue), both sexes showed similar reductions in reproductive effort (number of flower heads/shoot). Our results indicate that differences between the sexes of Baccharis in their response to environmental growing conditions is an important ecological factor associated with the separation of male and female function into separate individuals.  相似文献   

8.
Microclimate in the tropical montane cloud forest (TMCF) is variable on both spatial and temporal scales and can lead to large fluctuations in both leaf-level transpiration and whole plant water use. While variation in transpiration has been found in TMCFs, the influence of different microclimatic drivers on plant water relations in this ecosystem has been relatively understudied. Within the TMCF, epiphytes may be particularly affected by natural variation in microclimate due to their partial or complete disassociation from soil resources. In this study, we examined the effects of seasonal microclimate on whole plant water balance in epiphytes in both an observational and a manipulative experiment. We also evaluated the effects of different microclimatic drivers using three hierarchical linear (mixed) models. On average, 31 % of total positive sap flow was recovered via foliar water uptake (FWU) over the course of the study. We found that precipitation was the greatest driver of foliar water uptake and nighttime sap flow in our study species and that both VPD and precipitation were important drivers to daytime sap flow. We also found that despite adaptations to withstand seasonal drought, an extended dry period caused severe desiccation in most plants despite a large reduction in leaf-level and whole plant transpiration. Our results indicate that the epiphytes studied rely on FWU to maintain positive water balance in the dry season and that increases in dry periods in the TMCF may be detrimental to these common members of the epiphyte community.  相似文献   

9.
Apelin受体与血管加压素Ⅱ型受体均属于G蛋白偶联受体,Apelin与血管加压素均由下丘脑大细胞AVP神经元分泌,Apelin受体与血管加压素Ⅱ型受体均在肾脏表达,本文就Apelin与血管加压素的分布及参与水平衡调节做简单的综述,为其参与水代谢疾病的发病机制提供理论依据。  相似文献   

10.
River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed.  相似文献   

11.
We examined the effect of environmental patchiness on the spatial segregation of the sexes in the dioecious anemophilus grass Poa ligularis. Because the species is sensitive to grazing, a better understanding of environmental factors that control its spatial distribution and abundance could improve conservation efforts. We hypothesized that (i) males and females are spatially segregated in the microenvironments created by plant patches as the result of sexual specialization in habitat and/or resources use, (ii) sexual specialization is related to different tolerance to competition and reproductive costs of males and females, and (iii) changes in patch structure affect the microenvironment and the intensity of spatial segregation of the sexes. We analyzed the spatial distribution of sexes at three sites with different plant and micro-environmental patchiness and performed a controlled competition experiment with different substitution of males and females. Our results showed that large plant patches created larger sheltered soil fertility islands than small patches. As patch size and their area of influence increased, the density and the spatial segregation of the sexes of P. ligularis also increased, resulting in biased habitat-specific sex ratios. In accordance with their higher reproductive costs, females were more frequent in sheltered (low air evaporative demand) and nitrogen-rich areas inside patch perimeters than males. Females were also better able to tolerate inter-sexual competition than males. In contrast, males tolerated low nitrogen concentration in soil and low sheltering, probably gaining advantage in pollen dispersal. Inter- and intra-sexual competition, however, affected the reproductive output of both sexes. From the point of view of conservation, environmental patchiness is important to the status of P. ligularis populations. The reduction of patch size limits the available microsites, biases the sex ratio towards males inside patches, increases inter- and intra-sexual competition, and it might be expected to decrease overall seed and pollen production and consequently potential recruitment.  相似文献   

12.
Background Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance.Scope This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available.Conclusions Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources.  相似文献   

13.
Glomerulo-tubular balance of sale and water   总被引:3,自引:0,他引:3  
  相似文献   

14.
Salt and water balance in salmon smolts   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
17.
Summary The sexes of Chamaedorea ernesti-augusti are largely undifferentiated in the distribution of biomass, nitrogen, phosphorus, potassium, and total non-structural carbohydrates, among leaves and stems. Males bear more inflorescences that are cheaper except in nitrogen, but most females bear greater annual energetic and nutritional burdens due to seed production. The ratio of vegetative to reproductive biomass is 3.5 for males but only 1.2 for females on a per module basis.  相似文献   

18.
Eucalypt plantations have been trialled in recent years as a control measure for shallow groundwater associated with secondary salinity. Uncertainty still remains as to the potential growth and water use of these plantations; these relate mainly to the problems associated with drought stress and accumulated solutes in the root zone resulting from saline groundwater uptake. This study investigates the water balance and identifies water sources of a 21 year old unirrigated Eucalyptus grandis W. Hill ex Maiden (flooded or rose gum) and E. camaldulensis Dehnh. (river red gum) plantation over shallow saline groundwater in the Shepparton Irrigation Region of northern Victoria, Australia. Water sources used by the plantation were identified using a monthly water balance approach, together with investigations of stable isotopes of water (deuterium and oxygen-18), soil water and chloride. We found these trees to be heavily reliant on rainwater, and derive approximately 15% of their transpiration requirements from saline (10,000 mg l?1) groundwater at the capillary fringe. Rainfall at the site is relatively low (465 mm year?1 on average) and groundwater uptake provides a stable water source that leads to a slight extension of the growing period of these trees. There is little potential for recharge, with subsurface water moving into the groundwater depression created by tree water uptake.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号