首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this work we identified in adult and juvenile freshwater prawn, Macrobrachium rosenbergii, three major type of circulating hemocytes: fusiform; rounded; and large ovoid hemocytes. Rounded and large hemocytes represent the first defense line, since this type of cells exerts phagocytic activity as well as lectin synthesis. Considering that glycosylation plays important roles in cell communication and as a target for pathogenic microorganisms, in this report was also described the main glycosidic modifications that occur in the large and rounded hemocytes from the freshwater prawn during maturation as determined with lectins. Neu5Acalpha2,6Gal, was identified homogeneously distributed in the membrane in 90% of hemocytes from juvenile organisms. Maturation of the freshwater prawn induced a decrease or complete loss of Neu5Acalpha2,6Gal residues that were replaced with Neu5Acalpha2,3 molecules in practically all hemocytes from adult organisms. This change was paralleled by a diminution in 9-O-acetyl-neuraminic acid (Neu5,9Ac(2)) expression. T and Tn antigens (Galbetal,3 GalNAcalpha1-0-Ser/Thr or GalNAcalpha1-0-Ser/Thr, respectively), as well as N-glycosidically linked glycans, seem to be highly conserved throughout maturation. Our results show that sialylation of freshwater prawn hemocytes is modulated throughout the maturation process.  相似文献   

2.
The serum of the freshwater prawn contains a sialic acid specific lectin (MrL) that agglutinates erythrocytes from rat and rabbit, as well as some Gram negative and positive bacterial strains. In this work, we performed the chemical characterization of the MrL purified by affinity chromatography on stroma from rat erythrocytes and by ion exchange chromatography. In its active form, MRL is a dimeric glycoprotein with 9.5 kDa per subunit. The amino acid sequence of the lectin was deduced from peptides obtained after trypsin treatment by matrix-assisted laser desorption ionization mass spectrometry-time of flight analysis (MALDI-TOF). The predicted amino acid sequence of the lectin showed 54% homology with the hyperglycemic hormone from Macrobrachium rosenbergii. It also showed homology with the variable region of the human immunoglobulin kappa (22%) and lambda (27%) light chains. The lectin is a glycoprotein with 11% (w/w) carbohydrate content and is constituted by Gal, Man, GlcNAc, GalNAc and NeuAc in a molar ratio of 4:3:2:1:0.6. The primary structure of the carbohydrate chains of the lectin from the freshwater prawn was determined by affinity chromatography of MrL-glycopeptides on Con A and LCA lectin columns, which indicated that the main carbohydrate chains conforming the lectin are N-glycosidically linked. Man3 GlcNAc2.1 oligosaccharides were the most abundant structures with 57%) followed by Gal1.3 Man3 GlcNAc2.8 with 24%. Our results suggest that the freshwater prawn possess a lectin in the hemolymph plasma, related to those from the immunoglobulin superfamily.  相似文献   

3.
The S protein of bovine coronavirus (BCV) has been isolated from the viral membrane and purified by gradient centrifugation. Purified S protein was identified as a viral hemagglutinin. Inactivation of the cellular receptors by sialate 9-O-acetylesterase and generation of receptors by sialylation of erythrocytes with N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) indicate that S protein recognizes 9-O-acetylated sialic acid as a receptor determinant as has been shown previously for intact virions. The second glycoprotein of BCV, HE, which has been thought previously to be responsible for the hemagglutinating activity of BCV, is a less efficient hemagglutinin; it agglutinates mouse and rat erythrocytes, but in contrast to S protein, it is unable to agglutinate chicken erythrocytes, which contain a lower level of Neu5,9Ac2 on their surface. S protein is proposed to be responsible for the primary attachment of virus to cell surface. S protein is proposed to be responsible for the primary attachement of virus to cell surface receptors. The potential of S protein as a probe for the detection of Neu5,9Ac2-containing glycoconjugates is demonstrated.  相似文献   

4.
Glycophorin A (GPA), the major sialoglycoprotein of the human erythrocyte membrane, was isolated from erythrocytes of healthy individuals of blood groups A, B and O using phenol-water extraction of erythrocyte membranes. Interaction of individual GPA samples with three lectins (Psathyrella velutina lectin, PVL; Triticum vulgaris lectin, WGA and Sambucus nigra I agglutinin SNA-I) was analyzed using a BIAcore biosensor equipped with a surface plasmon resonance (SPR) detector. The experiments showed no substantial differences in the interaction between native and desialylated GPA samples originating from erythrocytes of either blood group and each of the lectins. Desialylated samples reacted weaker than the native ones with all three lectins. PVL reacted about 50-fold more strongly than WGA which, similar to PVL, recognizes GlcNAc and Neu5Ac residues. SNA-I lectin, recognizing alpha2-6 linked Neu5Ac residues, showed relatively weak reaction with native and only residual reaction with desialylated GPA samples. The data obtained show that SPR is a valuable method to determine interaction of glycoproteins with lectins, which potentially can be used to detect differences in the carbohydrate moiety of individual glycoprotein samples.  相似文献   

5.
The specificity of the sialic acid-binding lectin from ovine placenta was examined in detail by haemagglutination inhibition assays applying a panel of 32 synthetic sialic acid analogues. The carboxylic acid group is a prerequisite for the interaction with the lectin, the -anomer of the methyl glycoside is only a little more effective as an inhibitor than the -anomer and the most potent inhibitor was 9-deoxy-10-carboxylic acid Neu5Ac, followed by 4-oxo-Neu5Ac. In contrast to the majority of known sialic acid-binding lectins, the N-acetyl group of Neu5Ac is not indispensable for binding, neither is the hydroxyl group at C-9 since substitutions at this carbon atom are well tolerated. Furthermore, all sulfur-containing substituents at C-9 enhanced the affinity of the lectin. This is the first sialic acid-binding lectin found to strongly bind thio derivatives.  相似文献   

6.
A lectin from Delonix regia (DRL) seeds was purified by gel filtration on Sephadex G-100 followed by ion-exchange chromatography on diethylaminoethyl-Sepharose and reverse-phase high-performance liquid chromatography on a C18 column. Hemagglutinating activity was monitored using rat erythrocytes. DRL showed no specificity for human erythrocytes of ABO blood groups. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a single protein in the presence of 0.1 M of dithiothreitol (DTT) and in nonreducing conditions. Native-PAGE showed that DRL is a monomer with a molecular mass of about 12 kDa, as determined by denaturing gel electrophoresis and gel filtration chromatography. An amino acid composition revealed the absence of cysteine residues, the presence of 1 mol methionine/mol protein and a high proportion of acidic amino acids and glycine. The N-terminal sequence of DRL was determined by Edman degradation, and up to 16 amino acid residues showed more than 90% homology with other lectins from the Leguminosae family. The optimal pH range for lectin activity was between pH 8.0 and 9.0, and the lectin was active up to 60°C. The lectin required Mn2+ for hemagglutinating activity and remained active after reduction with 0.1 M of DTT, but lost activity in the presence of 8 M of urea. Sodium metaperiodate had no effect on the activity of DRL.  相似文献   

7.
The complete amino acid sequence of the lectin from Bothrops jararacussu snake venom (BJcuL) is reported. The sequence was determined by Edman degradation and amino acid analysis of the S-carboxymethylated BJcuL derivative (RC-BJcuL) and from its peptides originated from enzymatic digestion. The sequence of amino acid residues showed that this lectin displays the invariant amino acid residues characterized in C-type lectins. Amino acids analysis revealed a high content of acidic amino acids and leucine. These findings suggest that BJcuL, like other snake venom lectins, possesses structural similarities to the carbohydrate recognition domain (CRD) of calcium-dependent animal lectins belonging to the C-type -galactoside binding lectin family.  相似文献   

8.
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7??) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.  相似文献   

9.
Sialic acids as terminal residues of oligosaccharide chains play crucial roles in several cellular recognition events. Exploiting the selective affinity of Achatinin-H toward N-acetyl-9-O-acetylneuraminic acid-alpha2-6-GalNAc, we have demonstrated the presence of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on lymphoblasts of 70 children with acute lymphoblastic leukemia (ALL) and on leukemic cell lines by fluorimetric HPLC and flow cytometric analysis. This study aims to assess the structural aspect of the glycotope of Neu5,9Ac(2)-GPs(ALL) and to evaluate whether these disease-specific molecules can be used to monitor the clinical outcome of ALL. The Neu5,9Ac(2)-GPs(ALL) were affinity-purified, and three distinct leukemia-specific molecular determinants (135, 120, and 90 kDa) were demonstrated by SDS-PAGE, western blotting, and isoelectric focusing. The carbohydrate epitope of Neu5,9Ac(2)-GPs(ALL) was confirmed by using synthetic sialic acid analogs. The enhanced presence of anti-Neu5,9Ac(2)-GP(ALL) antibody in ALL patients prompted us to develop an antigen-ELISA using purified Neu5,9Ac(2)-GPs(ALL) as coating antigens. Purified antigen was able to detect leukemia-specific antibodies at presentation of disease, which gradually decreased with treatment. Longitudinal monitoring of 18 patients revealed that in the early phase of the treatment patients with lower anti-Neu5,9Ac(2)-GPs showed a better prognosis. Minimal cross-reactivity was observed in other hematological disorders (n = 50) like chronic myeloid leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, and non-Hodgkin's lymphoma as well as normal healthy individuals (n = 21). This study demonstrated the potential of purified Neu5,9Ac(2)-GPs(ALL) as an alternate tool for detection of anti-Neu5,9Ac(2)-GP antibodies to be helpful for diagnosis and monitoring of childhood ALL patients.  相似文献   

10.
A new galactose-specific lectin was purified from seeds of a Caesalpinoideae plant, Bauhinia variegata, by affinity chromatography on lactose-agarose. Protein extracts haemagglutinated rabbit and human erythrocytes (native and treated with proteolytic enzymes), showing preference for rabbit blood treated with papain and trypsin. Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives, especially lactose. SDS-PAGE showed that the lectin, named BVL, has a pattern similar to other lectins isolated from the same genus, Bauhinia purpurea agglutinin (BPA). The molecular mass of BVL subunit is 32 871 Da, determined by MALDI-TOF spectrometry. DNA extracted from B. variegata young leaves and primers designed according to the B. purpurea lectin were used to generate specific fragments which were cloned and sequenced, revealing two distinct isoforms. The bvl gene sequence comprised an open reading frame of 876 base pairs which encodes a protein of 291 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to have 263 amino acid residues and 28 963 Da in size.  相似文献   

11.
A lectin that recognized sialic acids and agglutinated mouse erythrocytes was purified from hemolymph of the crab Liocarcinus depurator. It consisted of 38-kDa subunits and had a pI about 6.0. The specificity of the lectin was assayed by hemagglutination inhibition. N-acetylneuraminic acid (Neu5Ac) was a good inhibitor and its N-acetyl group at C-5 was critical for lectin-ligand interaction. Substitution of the C-9 hydroxyl on Neu5Ac with an O-acetyl group (9-O-Ac-Neu5Ac) increased the inhibitory potency of this molecule. Furthermore, O-acetyl substitution of all the hydroxyl groups yielded even better inhibitors (2,4,7,8,9-O-Ac-Neu5Ac and its 1-O-methyl ester). Removal of the hydroxyl or O-acetyl group connected to C-2 reduced the potency of these inhibitors. The lectin agglutinated and stimulated human but not mouse lymphocytes. It was also inhibited by Escherichia coli (O111:B4) lipopolysaccharide and agglutinated specific gram-negative bacteria. In vitro labeling with [35S]methionine indicated that the lectin was synthesized in hepatopangreas of L. depurator. Immunofluorescence showed that among hemocytes it localized mainly in the large-granule population.  相似文献   

12.
Synthetic sialic acid analogues varying in the substitutents at position C-9 were analyzed for their ability to replace the natural receptor determinant for influenza C virus, N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2). By incubation of erythrocytes with sialyltransferase and the CMP-activated analogues, the cell surface was modified to contain sialic acid with one of the following C-9 substituents: an azido, an amino, an acetamido, or a hexanoylamido group. Among these, only 9-acetamido-N-acetylneuraminic acid (9-acetamido-Neu5Ac) was able to function as a receptor determinant for influenza C virus as indicated by the ability of the virus to agglutinate the modified red blood cells. In contrast to the natural receptors, 9-acetamido-Neu5Ac-containing receptors were found to be resistant against the action of sialate 9-O-acetylesterase, the viral receptor-destroying enzyme. No difference in the hemolytic activity of influenza C virus was detected when analyzed with erythrocytes containing either Neu5,9Ac2 or 9-acetamido-Neu5Ac on their surface. This finding indicates that cleavage of the receptor is not required for the viral fusion activity. The sialic acid analogues should be useful for analyzing not only the importance of the receptor-destroying enzyme of influenza C virus, but also other biological processes involving sialic acid.  相似文献   

13.
The nature of the receptor-destroying enzyme (RDE) of influenza C virus has been elucidated by analyzing its effect on the haemagglutination inhibitors rat alpha 1-macroglobulin (RMG) and bovine submandibulary mucin (BSM), respectively. The inhibitory activity of both compounds is abolished by incubation with influenza C virus. After inactivation, RMG and BSM were found to contain reduced amounts of N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) and increased amounts of N-acetylneuraminic acid (Neu5Ac). H.p.l.c. analysis revealed that purified Neu5,9Ac2 is converted to Neu5Ac by incubation with influenza C virus. These results demonstrate that RDE of influenza C virus is neuraminate-O-acetylesterase [N-acyl-9(4)-O-acetylneuraminate O-acetylhydrolase (EC 3.1.1.53)]. The data also indicate that haemagglutination-inhibition (HI) by RMG and BSM and most likely virus attachment to cell surfaces involves binding of influenza C virus to Neu5,9Ac2.  相似文献   

14.
An Apios americana lectin (AAL) and a lectin-like protein (AALP) were purified from tubers by chromatography on Butyl-Cellulofine, ovomucoid-Cellulofine, and DEAE-Cellulofine columns. AAL showed strong hemagglutinating activity toward chicken and goose erythrocytes, but AALP showed no such activity toward any of the erythrocytes tested. The hemagglutinating activity of AAL was not inhibited by mono- or disaccharides, but was inhibited by glycoproteins, such as asialofetuin and ovomucoid, suggesting that AAL is an oligosaccharide-specific lectin. The cDNAs of AAL and AALP consist of 1,093 and 1,104 nucleotides and encode proteins of 302 and 274 amino acid residues, respectively. Both amino acid sequences showed high similarity to known legume lectins, and those of their amino acids involved in carbohydrate and metal binding were conserved.  相似文献   

15.
The VP8* subunit of rotavirus spike protein VP4 contains a sialic acid (Sia)-binding domain important for host cell attachment and infection. In this study, the binding epitope of the N-acetylneuraminic acid (Neu5Ac) derivatives has been characterized by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. From this STD NMR data, it is proposed that the VP8* core recognizes an identical binding epitope in both methyl alpha-D-N-acetylneuraminide (Neu5Acalpha2Me) and the disaccharide methyl S-(alpha-D-N-acetylneuraminosyl)-(2-->6)-6-thio-beta-D-galactopyranoside (Neu5Ac-alpha(2,6)-S-Galbeta1Me). In the VP8*-disaccharide complex, the Neu5Ac moiety contributes to the majority of interaction with the protein, whereas the galactose moiety is solvent-exposed. Molecular dynamics calculations of the VP8*-disaccharide complex indicated that the galactose moiety is unable to adopt a conformation that is in close proximity to the protein surface. STD NMR experiments with methyl 9-O-acetyl-alpha-D-N-acetylneuraminide (Neu5,9Ac(2)alpha2Me) in complex with rhesus rotavirus (RRV) VP8* revealed that both the N-acetamide and 9-O-acetate moieties are in close proximity to the Sia-binding domain, with the N-acetamide's methyl group being saturated to a larger extent, indicating a closer association with the protein. RRV VP8* does not appear to significantly recognize the unsaturated Neu5Ac derivative [2-deoxy-2,3-didehydro-D-N-acetylneuraminic acid (Neu5Ac2en)]. Molecular modeling of the protein-Neu5Ac2en complex indicates that key interactions between the protein and the unsaturated Neu5Ac derivative when compared with Neu5Acalpha2Me would not be sustained. Neu5Acalpha2Me, Neu5Ac-alpha(2,6)-S-Galbeta1Me, Neu5,9Ac(2)alpha2Me, and Neu5Ac2en inhibited rotavirus infection of MA104 cells by 61%, 35%, 30%, and 0%, respectively, at 10 mM concentration. NMR spectroscopic, molecular modeling, and infectivity inhibition results are in excellent agreement and provide valuable information for the design of inhibitors of rotavirus infection.  相似文献   

16.
17.
A lectin was purified from Crotalaria paulina seeds by ion-exchange and FPLC molecular exclusion chromatography. CrpL had an apparent molecular mass of 30 kDa, as determined by SDS-PAGE under non-reducing and reducing conditions. CrpL effectively agglutinated human and cow erythrocytes, and this activity was not affected by 20 mM EDTA, showing no dependence of divalent cations. Hemagglutination was inhibited by N-acetyl- D-galactosamine, D-galactose and was also inhibited by glycoproteins, fetuin and asialofetuin. The N-terminal amino acid sequence of CrpL was identical to those of other lectins from the genus Crotalaria, and amino acid composition showed high amounts of Asx and Glx, and was rich in Gly, Ala and Ser, as also reported for lectins from other Crotalaria species. CrpL inhibited the growth of Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. passiflorae, suggesting a role of this lectin in the defense of seeds against bacterial infections.  相似文献   

18.
Sialic acids as terminal residues of oligosaccharide chains play a crucial role in several cellular recognition events. The presence of sialic acid on promastigotes of Leishmania donovani, the causative organism of Indian visceral leishmaniasis, was demonstrated by fluorimetric high-performance liquid chromatography showing Neu5Ac and, to a minor extent, Neu5,9Ac2. The presence of Neu5Ac was confirmed by GC/MS analysis. Furthermore, binding with sialic acid-binding lectins Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), and Siglecs showed the presence of both alpha2,3- and alpha2,6-linked sialic acids. No endogenous biosynthetic machinery for Neu5Ac could be demonstrated in the parasite. Concomitant western blotting of parasite membranes and culture medium with SNA demonstrated the presence of common sialoglyconjugates (123, 90, and 70 kDa). Similarly, binding of MAA with parasite membrane and culture medium showed three analogous sialoglycans corresponding to 130, 117, and 70 kDa, indicating that alpha2,3- and alpha2,6-linked sialoglycans are adsorbed from the fetal calf serum present in the culture medium. L. donovani promastigotes also reacted with Achatinin-H, a lectin that preferentially identifies 9-O-acetylated sialic acid in alpha2-->6 GalNAc linkage. This determinant was evidenced on parasite cell surfaces by cell agglutination, ELISA, and flow cytometry, where its binding was abolished by pretreatment of cells with a recombinant 9-O-acetylesterase derived from the HE1 region of the influenza C esterase gene. Additionally, binding of CD60b, a 9-O-acetyl GD3-specific monoclonal antibody, corroborated the presence of terminal 9-O-acetylated disialoglycans. Our results indicate that sialic acids (alpha2-->6 and alpha2-->3 linked) and 9-O-acetyl derivatives constitute components of the parasite cell surface.  相似文献   

19.
4-O-Acetylated, 7-O-acetylated, and 9-O-acetylated 4-methylumbelliferyl-alpha-N-acetyl-neuraminic acids (Neu4,5Ac2-MU, Neu5,7Ac2-MU, Neu5,9Ac2-MU) were tested as substrates of sialidases of Vibrio cholerae and of Clostridium perfringens. Both sialidases were unable to hydrolyse Neu4,5Ac2-MU. This compound at 1 mM concentration did not inhibit significantly the cleavage of Neu5Ac-MU, the best substrate tested. The 4-O-acetylated sialic acid glycoside is hydrolysed slowly by the sialidase from fowl plague virus. The relative substrate specificity, reflected in V/Km of the Vibrio cholerae sialidase is Neu5Ac-MU much greater than Neu5,7Ac2-MU approximately Neu5,9Ac2-MU and of the clostridial enzyme it is Neu5Ac-MU greater than Neu5,9Ac2-MU greater than Neu5,7Ac2-MU. The affinities of both enzymes for the side-chain O-acetylated sialic acid derivatives are higher than for Neu5Ac-MU. The artificial, well-defined substrates, described here, provide the opportunity to quantify the influence of sialic acid O-acetylation on the hydrolysis of sialoglycoconjugates without the side effects introduced by other parts of more complex glycans.  相似文献   

20.
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号