首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved method for the purification of bacterial polypeptide elongation factor Ts (EF-Ts) from one mesophile (Escherichia coli) and two thermophiles (Bacillus stearothermophilus and PS3) is described. The improvements are both in the facility of isolation and in increased yields. The purified factors were used for cross-reactivity studies with elongation factor Tu (EF-Tu) obtained from the same bacterial strains. In all combinations studied, the efficiency of EF-Ts in catalyzing the exchange of EF-Tu-bound GDP was proportional to the strength of the protein-protein complex. Whereas the factors from the two thermophiles were interchangeable, the mesophilic EF-Ts formed a very weak complex with thermophilic EF-Tu; however, thermophilic EF-Ts formed very strong complexes with mesophilic EF-Tu. Thus, e.g., EF-Tu from E. coli formed a complex with EF-Ts from B. stearothermophilus which was 10 times more stable than the corresponding homologous complex.  相似文献   

2.
3.
Elongation factor Ts (EF-Ts) is the guanine-nucleotide exchange factor of elongation factor Tu (EF-Tu), which promotes the binding of aminoacyl-tRNA to the mRNA-programmed ribosome in prokaryotes. The EF-Tu.EF-Ts complex, one of the EF-Tu complexes during protein synthesis, is also a component of RNA-dependent RNA polymerases like the polymerase from coliphage Qbeta. The present study shows that the Escherichia coli mutant GRd.tsf lacking the coiled-coil motif of EF-Ts is completely resistant to phage Qbeta and that Qbeta-polymerase complex formation is not observed. GRd.tsf is the first E. coli mutant ever described that is unable to form a Qbeta-polymerase complex while still maintaining an almost normal growth behavior. The phage resistance correlates with an observed instability of the mutant EF-Tu.EF-Ts complex in the presence of guanine nucleotides. Thus, the mutant EF-Tu.EF-Ts is the first EF-Tu.EF-Ts complex ever described that is completely inactive in the Qbeta-polymerase complex despite its almost full activity in protein synthesis. We propose that the role of EF-Ts in the Qbeta-polymerase complex is to control and trap EF-Tu in a stable conformation with affinity for RNA templates while unable to bind aminoacyl-tRNA.  相似文献   

4.
The interaction of Escherichia coli elongation factor Tu (EF-Tu) with elongation factor Ts (EF-Ts) and guanine nucleotides was studied by the stopped-flow technique, monitoring the fluorescence of tryptophan 184 in EF-Tu or of the mant group attached to the guanine nucleotide. Rate constants of all association and dissociation reactions among EF-Tu, EF-Ts, GDP, and GTP were determined. EF-Ts enhances the dissociation of GDP and GTP from EF-Tu by factors of 6 x 10(4) and 3 x 10(3), respectively. The loss of Mg(2+) alone, without EF-Ts, accounts for a 150-300-fold acceleration of GDP dissociation from EF-Tu.GDP, suggesting that the disruption of the Mg(2+) binding site alone does not explain the EF-Ts effect. Dissociation of EF-Ts from the ternary complexes with EF-Tu and GDP/GTP is 10(3)-10(4) times faster than from the binary complex EF-Tu.EF-Ts, indicating different structures and/or interactions of the factors in the binary and ternary complexes. Rate constants of EF-Ts binding to EF-Tu in the free or nucleotide-bound form or of GDP/GTP binding to the EF-Tu.EF-Ts complex range from 0.6 x 10(7) to 6 x 10(7) M(-1) s(-1). At in vivo concentrations of nucleotides and factors, the overall exchange rate, as calculated from the elemental rate constants, is 30 s(-1), which is compatible with the rate of protein synthesis in the cell.  相似文献   

5.
M R Ahmadian  R Kreutzer  M Sprinzl 《Biochimie》1991,73(7-8):1037-1043
The elongation factor Tu (EF-Tu) encoded by the tufl gene of the extreme thermophilic bacterium Thermus thermophilus HB8 was expressed under control of the tac promoter from the recombinant plasmid pEFTu-10 in Escherichia coli. Thermophilic EF-Tu-GDP, which amounts to as much as 35% of the cellular protein content, was separated from the E coli EF-Tu-GDP by thermal denaturation at 60 degrees C. The overproduced E coli-born T thermophilus EF-Tu was characterized by: i) recognition through T thermophilus anti-EF-Tu antibodies; ii) analysis of the peptides obtained by cyanogen bromide cleavage; iii) thermostability; iv) guanine nucleotide binding activity in the absence and the presence of elongation factor Ts; and v) ternary complex formation with phenylalanyl-tRNAPhe and GTP.  相似文献   

6.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

7.
Yeast mitochondrial elongation factor Tu (EF-Tu) was purified 200-fold from a mitochondrial extract of Saccharomyces cerevisiae to yield a single polypeptide of Mr = approximately 47,000. The factor was detected by complementation with Escherichia coli elongation factor G and ribosomes in an in vitro phenylalanine polymerization reaction. Mitochondrial EF-Tu, like E. coli EF-Tu, catalyzes the binding of aminoacyl-tRNA to ribosomes and possesses an intrinsic GTP hydrolyzing activity which can be activated either by kirromycin or by ribosomes. Kinetic and binding analyses of the interactions of mitochondrial EF-Tu with guanine nucleotides yielded affinity constants for GTP and GDP of approximately 5 and 25 microM, respectively. The corresponding affinity constants for the E. coli factor are approximately 0.3 and 0.003 microM, respectively. In keeping with these observations, we found that purified mitochondrial EF-Tu, unlike E. coli EF-Tu, does not contain endogenously bound nucleotide and is not stabilized by GDP. In addition, we have been unable to detect a functional counterpart to E. coli EF-Ts in extracts of yeast mitochondria and E. coli EF-Ts did not detectably stimulate amino acid polymerization with mitochondrial EF-Tu or enhance the binding of guanine nucleotides to the factor. We conclude that while yeast mitochondrial EF-Tu is functionally analogous to and interchangeable with E. coli EF-Tu, its affinity for guanine nucleotides and interaction with EF-Ts are quite different from those of E. coli EF-Tu.  相似文献   

8.
Elongation factor Tu from Thermus thermophilus was treated successively with periodate-oxidized GDP or GTP and cyanoborohydride. Covalently modified cyanogen bromide or trypsin fragments of the protein were isolated, and the position of their modification was determined. Lysine residues 52 and 137 were heavily labeled, lysine-137 being considerably more reactive in the GTP form as compared to the GDP form of the protein. These residues are in the proximity of the GDP/GTP binding site. Lys-325 was also labeled, but to a lower extent. The part of the EF-Tu containing residue 52 is missing in crystallized EF-Tu.GDP from Escherichia coli [Jurnak, F. (1985) Science (Washington, D.C.) 230, 32-36]. These results place the part of T. thermophilus EF-Tu corresponding to the missing fragment in E. coli EF-Tu in the vicinity of the nucleotide binding site and allow its role in the interaction with aminoacyl-tRNA and elongation factor Ts to be evaluated. Cross-linking of EF-Tu.GDP by irradiation at 257 nm showed that a sequence of 10 amino acids residues which is found in the Thermus thermophilus elongation factor Tu but not in other homologous bacterial proteins is located in the vicinity of the GDP/GTP binding site.  相似文献   

9.
Y X Zhang  Y Shi  M Zhou    G A Petsko 《Journal of bacteriology》1994,176(4):1184-1187
The gene encoding a 45-kDa protein (45K) of Chlamydia trachomatis serovar F was cloned, sequenced, and overexpressed in Escherichia coli. Alignment of the deduced peptide sequence with E. coli elongation factor Tu (EF-Tu) demonstrated 69% identity. The 45K was recognized by a Chlamydia genus-specific monoclonal antibody GP-45 and cross-reacted with a monospecific polyclonal antibody to E. coli EF-Tu. Purified recombinant 45K has the capability to bind GDP, and the binding was enhanced in the presence of E. coli elongation factor Ts (EF-Ts). The GDP binding was specifically inhibited by the monoclonal antibody GP-45. These data suggest that the 45K is a chlamydial EF-Tu, and it forms a functional complex with E. coli EF-Ts protein.  相似文献   

10.
《FEBS letters》1986,202(1):7-11
The method of purification of elongation factor Ts from Streptomyces aureofaciens is described. Purified elongation factors Ts from S. aureofaciens and Escherichia coli were tested in cross-reactivity studies with elongation factors Tu from both species in a GDP exchange reaction under equilibrium and non-equilibrium conditions. Experiments have revealed that slower spontaneous release of GDP from S. aureofaciens EF-Tu is compensated for by higher affinity of homologous EF-Ts towards EF-Tu and thus the initial rates of EF-Ts catalysed GDP exchange can be kept the same in both E. coli and S. aurefaciens in vitro systems.  相似文献   

11.
A protein existing mainly in the supernatant fraction of Escherichia coli was found to be methylated by accepting the methyl moiety originating from methionine. The protein was identified as peptide synthesis elongation factor Tu (EF-Tu) by the following criteria. 1) The methylatable protein separated at the same position as purified EF-Tu on two-dimensional gel electrophoresis. 2) The methylatable protein interacted with antiserum specific for EF-Tu. Amino acid analysis of the methyl-labeled protein suggested that the site of methylation was an epsilon-amino group of lysine.  相似文献   

12.
Animal mitochondrial protein synthesis factors elongation factor (EF) Tu and EF-Ts have been purified as an EF-Tu.Ts complex from crude extracts of bovine liver mitochondria. The mitochondrial complex has been purified 10,000-fold to near homogeneity by a combination of chromatographic procedures including high performance liquid chromatography. The mitochondrial EF-Tu.Ts complex is very stable and cannot be dissociated even in the presence of high concentrations of guanine nucleotides. No guanine nucleotide binding to this complex can be observed in the standard nitrocellulose filter binding assay. Mitochondrial EF-Ts activity can be detected by its ability to facilitate guanine nucleotide exchange with Escherichia coli EF-Tu. The EF-Tumt exhibits similar levels of activity on isolated mammalian mitochondrial and E. coli ribosomes, but displays minimal activity on Euglena gracilis chloroplast 70 S ribosomes and has no detectable activity on wheat germ cytoplasmic ribosomes. In contrast to the bacterial EF-Tu and the EF-Tu from the chloroplast of E. gracilis, the ability of the mitochondrial factor to catalyze polymerization is not inhibited by the antibiotic kirromycin.  相似文献   

13.
We have found the gene for a translation elongation factor Tu (EF-Tu) homologue in the genome of the nematode Caenorhabditis elegans. Because the corresponding protein was detected immunologically in a nematode mitochondrial (mt) extract, it could be regarded as a nematode mt EF-Tu. The protein possesses an extension of about 57 amino acids (we call this domain 3') at the C terminus, which is not found in any other known EF-Tu. Because most nematode mt tRNAs lack a T stem, domain 3' may be related to this feature. The nematode EF-Tu bound to nematode T stem-lacking tRNA, but bacterial EF-Tu was unable to do so. A series of domain exchange experiments strongly suggested that domains 3 and 3' are essential for binding to T stem-lacking tRNAs. This finding may constitute a novel example of the co-evolution of a structurally simplified RNA and the cognate RNA-binding protein, the latter having apparently acquired an additional domain to compensate for the lack of a binding site(s) on the RNA.  相似文献   

14.
We have studied the effects of specific amino acid replacements in EF-Tu upon the protein's interactions with guanine nucleotides and elongation factor Ts (EFTs). We found that alterations at the lysine residue of the Asn-Lys-Cys-Asp sequence, the guanine ring-binding sequence, differentially affect the protein's ability to bind guanine nucleotides. Wild type EF-Tu (Lys-136) binds GDP and GTP much more tightly than do many of the altered proteins. Replacing lysine by arginine lowers the protein's affinity for GDP by about 20-fold relative to the change in its affinity for EF-Ts. Substitutions at residue 136 by glutamine (K136Q) and glutamic acid (K136E) further lower the protein relative affinity for GDP by factors of about 4 and 10, respectively. In contrast, replacement of the residue by isoleucine (K136I) eliminates guanine nucleotide binding as well as EF-Ts binding. Apparently, the distortion of this loop by substitution at residue 136 of a bulky hydrophobic residue can hamper the binding for both substrates or disrupt the folding of the protein. All altered proteins except EF-Tu(K136I) are able to bind tRNA(Phe); however, they require much higher concentrations of GTP than wild type EF-Tu. In minimal media, Escherichia coli cells harboring plasmids encoding EF-Tu(K136E) or EF-Tu(K136Q) suffer growth retardation relative to cells bearing the same plasmid encoding wild type EF-Tu. Co-transformation of these cells with a compatible plasmid bearing the EF-Ts gene reverses this growth problem. The growth retardation effect of some of the altered proteins can be explained by their sequestering EF-Ts. These results indicate that EF-Ts is essential to the growth of E. coli and suggest a technique for studying EF-Ts mutants as well as for identifying other guanine nucleotide exchange enzymes.  相似文献   

15.
The amounts of the polypeptide chain elongation factors Tu, Ts, and G, and ribosomal protein SI were assessed under various growth conditions using three independent procedures: (a) Immunoprecipitation and gel electrophoresis, (b) radioimmune assay, and (c) activity measurements. It was demonstrated that, during balanced growth of E. coli, the intracellular levels of these proteins increased in proportion to the growth rate, and the ratio of EF-Tu:EF-Ts:EF-G:protein SI was 4-5:1:1:1, at all growth rates. The effects of isoleucine starvation on the rates of synthesis of these proteins were examined using a pair of isogenic stringent and relaxed strains. The syntheses of all these proteins were found to be under the influence of stringent control. These results indicate that in E. coli the syntheses of the above four proteins are regulated in a coordinated manner and are subject to stringent control.  相似文献   

16.
Phage SP RNA-dependent RNA polymerase (SP replicase) was purified from Escherichia coli infected with RNA phage SP. The enzyme was found to be composed of four non-identical polypeptides, i.e. subunits I, II, III, and IV and molecular weights of 74,000, 69,000, 47,000, and 36,000 daltons, respectively. As in the case of phage Qbeta replicase, the largest polypeptide is identical with the ribosomal protein S1, and subunits III and IV with polypeptide chain elongation factors EF-Tu and EF-ts, respectively.. This is based on the behaviour of the subunits on SDS-polyacrylamide gel electrophoresis, isoelectric focusing and immunological cross-reaction. Subunits I, III, and IV of SP replicase are derived from the host cell, while subunit II is coded by phage RNA genome. The striking coincidence of the composition and entity of the structural components of SP replicase with those of Qbeta replicase may indicate the structural and functional requirements of host-derived polypeptides in RNA replicase. The binding activity of S1 (in 70S ribosome comples) to poly (U) is retained in SP replicase complex. In contrast, the GDP binding activity of EF-Tu is masked in SP replicase. It is concluded that S1 is required functionally whereas EF-Tu.EF-Ts are required structurally in RNA replicase.  相似文献   

17.
Some molecular properties of the elongation factor Tu of protein synthesis purified in an aggregated state from gram-positive Streptomyces aureofaciens were studied and compared with those of Tu from gram-negative Escherichia coli. Electrofocussing under reducing conditions showed that the molecule of EF-Tu from S. aureofaciens has an isoelectric point shifted more to the acidic side compared with EF-Tu from E. coli. A comparison of amino acid composition revealed minor differences in the content of several amino acids in the two factors and showed that EF-Tu from S. aureofaciens contains four half-cystines per molecule. Under denaturing conditions only two mercapto groups reacted with 5,5'-dithiobis(2-nitrobenzoic acid). Limited tryptic digestion of aggregated EF-Tu from S. aureofaciens yields six fragments: the four main fragments are of a similar size as those of the E. coli factor. All fragments detected after trypsin digestion of S. aureofaciens EF-Tu were immunologically cross-reactive with antibodies against E. coli EF-Tu. However, even after 2 h of the reaction there still remains a small part of streptomycete factor uncleaved, which documents high resistance of aggregated EF-Tu towards trypsin.  相似文献   

18.
Two structural genes for the Thermus thermophilus elongation factor Tu (tuf) were identified by cross-hybridization with the tufA gene from E. coli. The sequence of one of these tuf genes, localized on a 6.6 kb Bam HI fragment, was determined and confirmed by partial protein sequencing of an authentic elongation factor Tu from T. thermophilus HB8. Expression of this tuf gene in E. coli minicells provided a low amount of immuno-precipitable thermophilic EF-Tu. Affinity labeling of the T. thermophilus EF-Tu and sequence comparison with homologous proteins from other organisms were used to identify the guanosine-nucleotide binding domain.  相似文献   

19.
Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.  相似文献   

20.
The Lit protease in Escherichia coli K-12 strains induces cell death in response to bacteriophage T4 infection by cleaving translation elongation factor (EF) Tu and shutting down translation. Suicide of the cell is timed to the appearance late in the maturation of the phage of a short peptide sequence in the major head protein, the Gol peptide, which activates proteolysis. In the present work we demonstrate that the Gol peptide binds specifically to domains II and III of EF-Tu, creating the unique substrate for the Lit protease, which then cleaves domain I, the guanine nucleotide binding domain. The conformation of EF-Tu is important for binding and Lit cleavage, because both are sensitive to the identity of the bound nucleotide, with GDP being preferred over GTP. We propose that association of the T4 coat protein with EF-Tu plays a role in phage head assembly but that this association marks infected cells for suicide when Lit is present. Based on these data and recent observations on human immunodeficiency virus type 1 maturation, we speculate that associations between host translation factors and coat proteins may be integral to viral assembly in both prokaryotes and eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号