首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phospholipid composition, fatty acid pattern and cholesterol content are studied in mitochondria of red lateral muscle of carp acclimated to high and low environmental temperatures.The results of the experiments are: mitochondria from cold-acclimated carp contain higher proportions of ethanolamine phosphatides than mitochondria from warm-acclimated fish, the opposite is true for the choline phosphatides. Thus, at constant pH, the membrane phospholipids are slightly more negatively charged at low acclimation temperature. The total plasmalogen content is reduced in the cold; this reduction is caused by a decrease in the proportion of the choline plasmalogens. The ethanolamine phosphoglycerides contain approx. 20% of the alk-1-enyl acyl type, irrespective of the acclimation temperature. There is no temperature-dependent difference in the low proportion of cholesterol.The fatty acids of total mitochondrial phospholipids are characterized by large amounts of the n-3 and n-6 families. The ratio of unsaturated to saturated fatty acids and the unsaturation index are remarkably higher than those reported for comparable mammalian phospholipids. Cold acclimation of carp does not significantly increase the unsaturation of total phospholipids. A fatty acid analysis of the main isolated phospholipids, however, shows that cold acclimation considerably increases unsaturation of the neutral phosphatidylcholine, whereas it dramatically decreases unsaturation of the negatively charged cardiolipin. It is suggested that the observed fatty acid substitution in phosphatidylcholine indicates a temperature-induced fluidity adaptation within the mitochondrial lipid bilayer, whereas the inverse acclimation pattern of cardiolipin provides a suitable lipid to accommodate the temperature-dependent modifications in the dynamic surface shape of integral membrane proteins.  相似文献   

2.
Ethanol consumption was correlated with changes in acyl group profiles of phosphatidylcholine and triacylglycerols in serum of Sinclair(S-1) miniature boars. Serum triacylglycerols in the control pigs were high in linoleate (18:2) (48%) and low in stearate (18:0 (3%). Upon feeding with 10% (w/v) ethanol ad lib for two weeks, the proportion of 18:2 in serum triacylglycerols decreased to 12–15% with a concomitant increase in 16:0, 18:0 and 18:1. Similar, but less extensive, acyl group changes were observed in the serum phosphatidylcholine. In addition, there was a decrease in the proportion of 20:3 (n?6), but a biphasic change was shown in 20:4 (n?6) with respect to ethanol consumption. In general, the high ethanol consumers (7.0 g/kg/day) indicated a more rapid rate of acyl group change than the low consumers (3.8 g/kg/day). Upon withdrawal of ethanol, acyl groups of triacylglycerols rapidly returned towards the control values, whereas only small changes were observed for the recovery in phospholipids. In this situation, the low-consumer group indicated a more rapid recovery than the high-consumer group. Results indicate that with the swine model, serum lipid changes can be a useful parameter for correlating biological changes upon ethanol consumption.  相似文献   

3.
4.
Both Chinese hamster ovary cells in culture and E.coli cells change their lipid composition when grown in the presence of ethanol, pentobarbital, and chlorpromazine. The effects of ethanol and the cross-tolerant drug, pentobarbital, are similar. Both cause a shift from 18:0 fatty acid to 16:0 fatty acids in CHO cells and a decrease in the proportion of saturated fatty acids in E.coli. Chlorpromazine, a non-cross-tolerant drug, causes the opposite effect in E.coli, a decrease in the proportion of unsaturated fatty acids. Chlorpromazine has little effect on the fatty acid composition of CHO cells. These changes in lipid composition are proposed as an adaptive response and a part of the mechanism for the development of drug tolerance.  相似文献   

5.
We investigated the effect of short-term fasting on coordinate changes in the fatty acid composition of adipose triacylglycerol (TAG), serum non-esterified fatty acids (NEFA), liver TAG, and serum TAG and phospholipids in mice fed ad libitum or fasted for 16 h overnight. In contrast to previous reports under conditions of maximal lipolysis, adipose tissue TAG was not preferentially depleted of n-3 PUFA or any specific fatty acids, nor were there any striking changes in the serum NEFA composition. Short-term fasting did, however, increase the hepatic proportion of n-3 PUFA, and almost all individual species of n-3 PUFA showed relative and absolute increases. The relative proportion of n-6 PUFA in liver TAG also increased but to a lesser extent, resulting in a significant decrease in the n-6:n-3 PUFA ratio (from 14.3 ± 2.54 to 9.6 ± 1.20), while the proportion of MUFA decreased significantly and SFA proportion did not change. Examination of genes involved in PUFA synthesis suggested that hepatic changes in the elongation and desaturation of precursor lipids could not explain this effect. Rather, an increase in the expression of fatty acid transporters specific for 22:6n-3 and other long-chain n-3 and n-6 PUFA likely mediated the observed hepatic enrichment. Analysis of serum phospholipids indicated a specific increase in the concentration of 22:6n-3 and 16:0, suggesting increased specific synthesis of DHA-enriched phospholipid by the liver for recirculation. Given the importance of blood phospholipid in distributing DHA to neural tissue, these findings have implications for understanding the adipose–liver–brain axis in n-3 PUFA metabolism.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0490-2) contains supplementary material, which is available to authorized users.  相似文献   

6.
ESR spectrometry with 5-, 7-, 10-, and 12-doxylstearate probes and a combined index considering separately the double-bond numbers of essential and nonessential fatty acids were used to investigate the structural role of the double bonds of polyunsaturated fatty esters in membrane phosphoglycerides. Purified brush border membrane vesicles were prepared from the jejunum of piglets receiving either high (HLA) or low (LLA) dietary levels of linoleic acid (18:2 n-6). In the LLA as compared to the HLA group, there were no significant modifications of (a) the relative contents of cholesterol, phospholipid, and protein and of (b) the phosphoglyceride class distribution, contrasting with very large changes in the fatty acid compositions of each phosphoglyceride. These changes were characterized by an increase in nonessential monoene and triene (18:1 n-9 and 20:3 n-9) and a decrease in essential diene (18:2 n-6) in LLA- as compared to HLA-fed piglets. The essential tetraene 20:4 n-6 remained rather constant despite an overall nonsignificant increase in the LLA group. The total double-bond number (TDBn) was not significantly affected, contrasting with the variations in the double-bond numbers of essential and nonessential fatty acids (DBn(EFA) and DBn(nonEFA), respectively). The combined DBn(EFA)/DBn(nonEFA) index was 1.7-3.3 times lower in LLA than in HLA membrane phospholipids. It was concluded that the diet was able to affect the double-bond distribution in the upper and inner half-parts of the membrane leaflet without changing the total number of double bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The synthesis of long chain polyunsaturated fatty acids (LCPUFA), such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), involves fatty acyl desaturase and elongase enzymes. The marine fish species southern bluefin tuna (SBT) can accumulate large quantities of omega-3 (n-3) LCPUFA in its flesh but their capacity to synthesize EPA and DHA is uncertain. A cDNA, sbtElovl5, encoding a putative fatty acyl elongase was amplified from SBT liver tissue. The cDNA included an open reading frame (ORF) encoding 294 amino acids. Sequence comparisons and phylogenetic analyses revealed a high level of sequence conservation between sbtElovl5 and fatty acyl elongase sequences from other fish species. Heterologous expression of the sbtElovl5 ORF in Saccharomyces cerevisiae confirmed that it encoded a fatty acyl elongase capable of elongating C18/20 polyunsaturated fatty acid (PUFA) substrates, but not C22 PUFA substrates. For the first time in an Elovl5, the substrate competition occurring in nature was investigated. Higher activity towards n-3 PUFA substrates than omega-6 (n-6) PUFA substrates was exhibited, regardless of substrate chain length. The sbtElovl5 preferentially elongated 18:4n-3 and 18:3n-6 rather than 20:5n-3 and 20:4n-6. The sbtElovl5 enzyme also elongated saturated and monounsaturated fatty acids.  相似文献   

8.
—Age-related changes in acyl group composition of diacyl-glycerophosphorylethanolamine (GPE), alkenylacyl-GPE and diacyl-glycerophosphorylcholine (GPC) were examined in myelin and microsomal fractions of mouse brain during development. In general, the phosphoglycerides in the myelin fraction showed an increase in the proportions of 18:1 and 20:1 and a decrease in the proportions of 16:0, 20:4(n-6) and 22:6(n-3) with increasing age. These changes were especially obvious with the acyl groups of alkenylacyl-GPE. The acyl group profiles of phosphoglycerides in the microsomal fraction were different from those in the myelin fraction. During development, there was an increase in 22:6 and a decrease in 20:4 in the phosphoglycerides of microsomes. These changes were especially obvious with the diacyl-GPE. Starting from 2 weeks of age, there was also an increase in the proportions of 18:1 and 20:1 in alkenylacyl-GPE in the microsomal fraction but this change was not as dramatic as that in the myelin fraction. In general, the acyl groups of diacyl-GPC in both myelin and microsomal fractions showed only little age-related changes as compared to the ethanolamine phosphoglycerides. Results suggest an induction in the synthesis of monoenoic fatty acids in brain during development. The monoenoic fatty acids synthesized during this period are rapidly and preferentially incorporated into the ethanolamine plasmalogen for further utilization in synthesis of the myelin membranes.  相似文献   

9.
Conditions for the conversion of palmitate into CO2 and acetoacetate by liver homogenates and isolated liver mitochondria are described. In this system, using liver homogenates, adenosine inhibited the conversion of palmitate into CO2 and acetoacetate. The inhibition was not observed if the homogenate was substituted by mitochondria or if palmitate was substituted by palmitoyl CoA or palmitoyl carnitine. Intraperitoneal injection of adenosine produced a marked decrease in the level of acetoacetate and β-hydroxybutyrate in plasma, without changing the concentration of serum free fatty acids. Thus, the nucleoside depressed in vivo the oxidation of long chain fatty acids in liver by inhibiting the extramitochondrial acyl CoA synthase(s). The paramount importance of the extramitochondrial activation of fatty acids as a key control in their oxidation and in the production of ketone bodies is discussed.  相似文献   

10.
Short-term weight-reducing regimens were shown to influence fatty acid composition of serum lipids unfavorably. Adding long chain n-3 polyunsaturated fatty acids (n-3 LC PUFA) to a low-calorie diet (LCD) could avoid these changes. The aim of this study was to examine the effect of a short-term in-patient weight-reducing regimen including LCD with yogurt enriched by low doses of n-3 PUFA (n-3 LCD). The enriched yogurt contained 790 mg of fish oil, predominantly eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic (22:6n-3; DHA). Forty obese women were randomly assigned to the group consuming LCD and joghurt either with or without n-3 enrichment. Following the 3-week diet in the n-3 LCD group a significantly higher increase in the proportion of n-3 LC PUFA (sum of n-3 FA, EPA and DHA) in serum lipids was confirmed. In phospholipids (PL) a significant difference in the sum of n-6 fatty acids was found, a decrease in the n-3 LCD group and an increase in LCD group. Significantly higher increase in the PL palmitate (16:0) was shown in the LCD group. The results suggest that low doses of n-3 fatty acid enrichment can help to avoid unfavorable changes in fatty acid composition in serum lipids after a short-term weight-reducing regimen.  相似文献   

11.
Long chain n-6 and n-3 fatty acids play important roles in labor and delivery. These effects may be mediated by prostaglandin (PG) synthesis and by regulation of matrix metalloproteinases (MMPs), both of which play roles in uterine contraction, cervical ripening and rupture of fetal membranes. The effects of altering dietary n-6:n-3 long chain fatty acid ratios, and the addition of dietary conjugated linoleic acids (CLA) and docosahexaenoic acid (DHA) on fatty acid composition of reproductive tissues, PG synthesis in liver and reproductive tissue and serum MMP levels were examined in pregnant rats. Modified AIN-96G diets with n-6:n-3 ratios of 7:1 and 34:1 with and without added 1.1% (by weight) conjugated linoleic acid (CLA) and/or 0.3% (by weight) DHA were fed through day 20 of gestation. Reproductive tissues readily incorporated both DHA and CLA. CLA significantly (P<0.05) depressed PGF(2 alpha)synthesis in placenta, uterus and liver by 50% when the n-6:n-3 ratio was 7:1 and by 66% at 34:1 ratio. Significant differences (P<0.05) in PGE(2)synthesis in uterus and liver were seen only between groups fed the high ratio of n-6:n-3 without CLA, and the low ratio with CLA. Addition of CLA to DHA containing diets depressed PGF(2alpha) by one-third in uterus and liver (P<0.05). Serum MMP-9 and active MMP-2 were suppressed (P<0.05) by addition of either CLA or DHA.  相似文献   

12.
13.
Rats were given a cod liver oil supplemented diet and a standard diet for 4 months. The cod liver oil supplementation resulted in a marked increase in the 20:5(n-3) and 22:6(n-3) fatty acids and a marked decrease in the 20:4(n-6) fatty acid in phosphatidylcholine and ethanolamine of the atrial membrane. Atria from the cod liver oil treated rats showed a marked decrease in contractile force, heart rate and cyclic AMP (cAMP) levels under basal conditions. Stimulation with noradrenaline (1 X 10(-6) M) during high oxygen saturation and reoxygenation resulted in an equal increase in the mechanical responses of the two groups in spite of the significantly different levels of cAMP, whereas in hypoxia, both the cAMP level and the contractile force were significantly lower in the cod liver oil treated group. These results indicate that changes in the fatty acid composition of heart membrane phospholipids is associated with changes in adenylate cyclase activity and physiological function of the rat heart and that an increase in the n-3/n-6 fatty acid ratio in membrane phospholipids of the heart results, when oxygen is abundant in enhanced cAMP-independent contractile activity.  相似文献   

14.
We explored the uses of fish oil (active EPA-30) as a source of eicosapentaenate (EPA; 20:5 n-3), to young and old rats. We treated three subgroups of rats each comprising 20 young or old rats, respectively. The first group was kept on the basal ration (lab-pellet) as control diet, the second group was fed semi-purified diets contained 5% pig-fat (n-3 fatty acids deficient diet). The third group was fed a modified diet in which 50% of pig-fat was replaced by active EPA-30. Livers of young rats fed pig-fat had a drastic decrease in the amount of phosphatidylethanolamine (PE) and omega-3 polyunsaturated fatty acids (EPA, 20:5 n-3 and docosahexaenoic, DHA, 22:6 n-3) and compensatory increase of phosphatidylcholine, saturated fatty acids and n-6 polyunsaturated fatty acids in the liver phospholipids. In contrast, the liver of young rats fed active EPA-30 had large amounts of PE and concomitant enrichment in polyunsaturated fatty acids. The liver of old rats, fed on active EPA-30 supplemented diet had lower amounts of PE and there were no significant changes in the phospholipid fatty acid composition.  相似文献   

15.
In this review, changes in brain lipid composition and metabolism due to aging are outlined. The most striking changes in cerebral cortex and cerebellum lipid composition involve an increase in acidic phospholipid synthesis. The most important changes with respect to fatty acyl composition involve a decreased content in polyunsaturated fatty acids (20:4n-6, 22:4n-6, 22:6n-3) and an increased content in monounsaturated fatty acids (18:1n-9 and 20:1n-9), mainly in ethanolamine and serineglycerophospholipids. Changes in the activity of the enzymes modifying the phospholipid headgroup occur during aging. Serine incorporation into phosphatidylserine through base-exchange reactions and phosphatidylcholine synthesis through phosphatidylethanolamine methylation increases in the aged brain. Phosphatidate phosphohydrolase and phospholipase D activities are also altered in the aged brain thus producing changes in the lipid second messengers diacylglycerol and phosphatidic acid.  相似文献   

16.
There was a decrease in the polarisation value of the fluorescent probe diphenylhexatriene in a wide range of purified plasma and subcellular membranes of obese (obob) mice. These changes were consistent with alterations in the fatty acyl chain content of specific membrane phospholipids. An increase in 22:6 and a loss of 18:2 in phosphatidyl ethanolamine was the major compositional change in adipocyte plasma membranes of obob mice.  相似文献   

17.
The n-3 fatty acids contribute to regulation of hepatic fatty acid oxidation and synthesis in adults and accumulate in fetal and infant liver in variable amounts depending on the maternal diet fat composition. Using 2D gel proteomics and matrix-assisted laser desorption/ionization time of flight mass spectrometry, we recently identified altered abundance of proteins associated with glucose and amino acid metabolism in neonatal rat liver with increased n-3 fatty acids. Here, we extend studies on n-3 fatty acids in hepatic metabolic development to targeted gene and metabolite analyses and map the results into metabolic pathways to consider the role of n-3 fatty acids in glucose, fatty acid, and amino metabolism. Feeding rats 1.5% compared with <0.1% energy 18:3n-3 during gestation led to higher 20:5n-3 and 22:6n-3 in 3-day-old offspring liver, higher serine hydroxymethyltransferase, carnitine palmitoyl transferase, and acyl CoA oxidase and lower pyruvate kinase and stearoyl CoA desaturase gene expression, with higher cholesterol, NADPH and glutathione, and lower glycine (P < 0.05). Integration of the results suggests that the n-3 fatty acids may be important in facilitating hepatic metabolic adaptation from in utero nutrition to the postnatal high-fat milk diet, by increasing fatty acid oxidation and directing glucose and amino acids to anabolic pathways.  相似文献   

18.
The hepatic fatty acid metabolism was investigated in rats stressed by selenium deficiency and enhanced fish oil intake. Changes in the composition of lipids, peroxides, and fatty acids were studied in the liver of rats fed either a Sedeficient (8 microg Se/kg) or a Se-adequate (300 microg Se/kg) diet, both rich in n-3 fatty acid-containing fish oil (100 g/kg diet) and vitamin E (146 mg alpha-tocopherol/kg diet). The two diets were identical except for their Se content. Se deficiency led to a decrease in hair coat density and quality as well as to changes in liver lipids, individual lipid fractions and phospholipid fatty acid composition of the liver. The low Se status did reduce total and reduced glutathione in the liver but did not affect the hepatic malondialdehyde level. In liver phospholipids (PL), Se deficiency significantly reduced levels of palmitic acid [16:0], fatty acids of the n-3 series such as DHA [22:6 n-3], and other long-chain polyunsaturates C-20-C-22, but increased n-6 fatty acids such as linoleic acid (LA) [18:2 n-6]. Thus, the conversion of LA to arachidonic acid was reduced and the ratio of n-6/n-3 fatty acids was increased. As in liver PL, an increase in the n-6/n-3 ratio was also observed in the mucosal total fatty acids of the small intestine. These results suggest that in rats with adequate vitamin E and enhanced fish oil intake, Se deficiency affects the lipid concentration and fatty acid composition in the liver. The changes may be related to the decreased levels of selenoenzymes with antioxidative functions. Possible effects of Se on absorption, storage and desaturation of fatty acids were also discussed.  相似文献   

19.
The effects of a 14-week fish diet and exercise programme on lipid metabolism and platelet aggregation in healthy female students (n = 99) were studied. The subjects were divided into four groups: a control group, a fish diet group (3.5 meals containing fish per week, 0.9 g n-3 fatty acids per day), an exercise group (at least three training sessions per week) and a combined fish diet and exercise group. The proportion of n-3 fatty acids increased at the expense of n-6 fatty acids in platelets and erythrocyte ghosts in the fish diet groups. Serum triglyceride concentrations tended to decrease in the fish diet and exercise groups and a significant decrease was found in the combined fish diet and exercise group (13%, P less than 0.05). No significant changes took place in the other serum lipid and apolipoprotein concentrations. Platelet production of thromboxane B2, plasma 6-keto-PGF1 alpha concentrations and adenosine 5'-diphosphate (ADP)-induced platelet aggregation also remained unchanged in all groups during the study. However, an inverse correlation was found between physical fitness (maximal oxygen uptake and maximal exercise intensity) and serum triglycerides, total cholesterol, low density lipoprotein cholesterol and platelet aggregation. This suggests that improved physical fitness is related to beneficial changes in serum lipid concentrations and to a decreased aggregation tendency of platelets. The responses of the female subjects to a fish diet were smaller when compared to earlier studies on male subjects. This suggests that there are sex differences in the efficiency of n-3 fatty acids in modifying lipid metabolism.  相似文献   

20.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号