首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The capacity of four oligopurine.oligopyrimidine (pur.pyr) sequences with different lengths of interruptions in the center [GAA)4(N)n(GAA)4G) (n = 3, 5, 7, and 9) to adopt intramolecular DNA triplexes was evaluated in recombinant plasmids. The hyperreactive patterns of the pur.pyr inserts to specific chemical probes (OsO4, diethyl pyrocarbonate, and dimethyl sulfate) at the base pair level demonstrate that intramolecular triplexes with identical 12-base triads in the stem but with different loop sizes (4, 6, 8, and 10 bases) can form in supercoiled plasmids. Furthermore, the extent of OsO4 modification was measured as a function of temperature and of average negative supercoil density. In addition, the transition free energy of B-DNA to triplexes at pH 4.5 was determined by two-dimensional electrophoresis. These comparative studies show that longer loops require more supercoil energy for triplex formation and are less thermostable than triplexes with shorter loops. Also, it may be that not only the loop size but the base composition of the loop region affects the structural transition and triplex stability. Thus, these results significantly broaden the range of natural pur.pyr sequences that may adopt triplexes.  相似文献   

3.
L Guarente 《Cell》1988,52(3):303-305
  相似文献   

4.
5.
We report here kinetic and thermodynamic studies on differential isomerization of intramolecular Pyr*Pur.Pyr triplexes in supercoiled plasmids. Two structural isomers of the triplex exist: one with the 3'-half of the Pyr strand as the third strand (H-y3 form) and the other with the 5'-half as the third strand (H-y5 form). The relative populations of the two triplex isomers was determined using the chemical probe with diethyl pryrocarbonate as a function of incubation time. The results demonstrated that triplexes were formed rapidly after a pH change from pH 8.0 to 5.0 and that the initial population of the two isomers exponentially changed with incubation time to reach true thermodynamic equilibrium with a time constant of 0.6-10 h, depending on temperature and the presence of Mg2+. The results clearly demonstrated that interconversion occurs between the two isomers and that the presence of Mg2+ generally retarded the interconversion rates. Kinetic and thermodynamic analyses of the relative populations of the two isomers revealed that the apparent energy barrier for transition from duplex to the H-y3 form is higher than that to the H-y5 form, but H-y3 is more stable in enthalpy terms than H-y5. Therefore, H-y3 is kinetically inferior but thermodynamically favored at higher supercoil levels in plasmids. The presence of Mg2+ resulted in both a kinetic and a thermodynamic preference for H-y5 formation, relative to the H-y3 form.  相似文献   

6.
The atomic force microscope (AFM) was used to image supercoiled plasmid DNA deposited on a mica surface in either a hydrated or desiccated state. Hydrated plasmid was precisely cut by the scanning tip at a location determined by the instrument operator. Small pieces of DNA (100-150 nm in length) were excised and deposited adjacent to the dissected plasmid, demonstrating that it is possible to remove and manipulate genomic DNA fragments, unresolvable by light microscopy, from defined chromosomal locations by AFM.  相似文献   

7.
Two self complementary oligonucleotides, T(GC)4AT(GC)4ACATG and C(GC)2(AT)5 (GC)3ATG, were synthesized and cloned into plasmids. Negative supercoiling causes a structural transition in the primary helix of both inserts. The first sequence converts into the left-handed helix, whereas the second sequence undergoes a transition into a cruciform or a Z-type structure depending on the experimental conditions employed. This has been deduced from the mapping of S1 nuclease sensitive sites, OsO4-sensitive sites, DEP modification pattern and relaxation studies. In addition, the differential effect of 5-cytosine methylation and binding of the AT-specific drug distamycin on these transitions further supports this interpretation. Thus, it is demonstrated, that the same sequence which is both inverted repeat and alternating purine-pyrimidine type may adopt either the left-handed conformation or the cruciform structure in response to the superhelical stress. Formation of the Z-type helix can be transmitted through the d(AT)n region which is 10 bp in length.  相似文献   

8.
9.
The effects of interruptions in the homopurine bias and the G+C content of the homopurine.homopyrimidine (pur.pyr) sequences on intramolecular triplex formation and stability in supercoiled plasmids were evaluated. In addition, the interconversion of triplex and duplex, after altering the stabilizing factors (low pH or supercoiling), was studied. We conclude: (a) a 42-base pair pur.pyr sequence with three consecutive interruptions does not form a large triplex with three unpaired nucleotides in the stem. Instead, a mixture of two smaller (27- and 28-nucleotide) triplexes forms. (b) A 28-nucleotide sequence with a single interruption forms a triplex with one unpaired nucleotide in the stem. This interruption causes the triplex to be 7 degrees C less thermostable and requires more superhelical energy for formation than the control triplex. (c) As the G+C content of a pur.pyr sequence increases, the thermostability of the triplex increases and the triplex requires less supercoiling for formation. (d) The interconversion between duplex and triplex is fast. After negative supercoiling is removed, all triplex becomes duplex in about 3 min. When the pH is shifted from 8.0 to 5.2, the conversion of duplex to triplex in a negatively supercoiled plasmid is complete in less than 2 min. Hence, these kinetic properties are consistent with important biological roles for triplexes. In summary, the results from both this and the accompanying paper show that a substantial amount of sequence imperfections is tolerated for triplex formation and stability.  相似文献   

10.
11.
Transfer of octopine Ti plasmids to strains already carrying an octopine Ti plasmid was found to occur at the same (high) frequency as transfer to Ti plasmid lacking recipients, showing that resident Ti plasmids do not exhibit entry exclusion towards incoming Ti plasmids. The resident octopine Ti plasmid was lost by the recipient after the entrance of the incoming Ti plasmid, which is indicative of the incompatibility between the Ti plasmids. Octopine Ti plasmids were found to become established only infrequently in recipients with a nopaline Ti plasmid and, vice versa, nopaline Ti plasmids were only rarely established in recipients with an octopine Ti plasmid. Rare clones in which the incoming octopine (nopaline) Ti plasmid had been established despite the presence of a nopaline (octopine) Ti plasmid appeared to harbor cointegrates consisting of the entire incoming Ti plasmid and the entire resident Ti plasmid. The integration event invariably had occurred in a region of the plasmids that is highly conserved in evolution and that is essential for oncogenicity. These results show that octopine and nopaline Ti plasmids cannot be maintained as separate replicons by one and the same cell. Therefore, be definition, these plasmids belong to the same incompatibility group, which has been names inc Rh-1. Agrobacterial non-Ti octopine and nopaline plasmids were found to belong to another incompatibility group. The tumorigenic properties of strains harboring two different Ti plasmids, in a cointegrate structure, were indicative of the virulence genes of both of them being expressed. The agrobacterial non-Ti octopine and nopaline plasmids did not influence the virulence properties encoded by the Ti plasmid.  相似文献   

12.
13.
14.
15.
The native form of Drosophila melanogaster DNA topoisomerase II was purified from Schneider's S3 tissue culture cells and studied with two supercoiled minicircle preparations, mini and mini-CG, 354 bp and 370 bp in length, respectively. Mini-CG contains a d(CG)7 insert which assumes a left-handed Z-DNA conformation in negative supercoiled topoisomers with a negative linking number difference - delta Lk greater than or equal to 2. The interactions of topoisomerase II with topoisomer families of mini and mini-CG were studied by band-shift gel electrophoresis in which the individual topoisomers and their discrete or aggregated protein complexes were resolved. A monoclonal anti-Z-DNA IgG antibody (23B6) bound and aggregated only mini-CG, thereby confirming the presence of Z-DNA. Topoisomerase II bound and relaxed mini-CG more readily than mini. In both cases, there was a preference for more highly negatively supercoiled topoisomers. The topoisomerase II inhibitor VM-26 induced the formation of stable covalent DNA-protein intermediates. In addition, the non-hydrolyzable GTP analogue GTP gamma S inhibited the binding and relaxation activities. Experiments to detect topoisomerase cleavage sites failed to elicit specific loci on either minicircle preparation. We conclude that Drosophila topoisomerase II is able to bind and process small minicircles with lengths as short as 360 bp and negative superhelix densities, - sigma, which can exceed 0.1. Furthermore, the enzyme has a preferential affinity for topoisomers containing Z-DNA segments and relaxes these molecules, presumably by cleavage external to the inserts. Thus, a potentially functional relationship between topoisomerase II, an enzyme regulating the topological state of DNA-chromatin in vivo, and left-handed Z-DNA, a conformation stabilized by negative supercoiling, has been established.  相似文献   

16.
The killer double-stranded RNA plasmids of yeast.   总被引:20,自引:0,他引:20  
R B Wickner 《Plasmid》1979,2(3):303-322
  相似文献   

17.
Kang JS  Abugo OO  Lakowicz JR 《Biopolymers》2002,67(2):121-128
The metal-ligand complex, [Ru(bpy)2(dppz)]2+ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) (Ru-BD), was used as a spectroscopic probe for studying nucleic acid dynamics. The Ru-BD complex displays a long lifetime of over 100 ns and a molecular light switch property upon DNA binding due to shielding of its dppz ligand from water. To further show the usefulness of this luminophore (Ru-BD) for probing DNA dynamics, we examined its intensity and anisotropy decays when intercalated into supercoiled and linear pTZ18U plasmids using frequency-domain fluorometry with a light-emitting diode (LED) as the modulated light source. Compared to the supercoiled plasmids with an average intensity decay time of 120.8 ns at 25 degrees C, we obtained somewhat longer lifetimes for the linear plasmids ((tau) = 141.4 ns at 25 degrees C), suggesting a more efficient shielding from water by the linear plasmids. The anisotropy decay data also showed longer rotational correlation times for the linear plasmids (495 and 35 ns at 25 degrees C) as compared to the supercoiled plasmids (412 and 27 ns at 25 degrees C). The slow and fast rotational correlation times appear to be consistent with the bending and torsional motions of the plasmids, respectively. The anisotropy values were quite similar, although the values of the supercoiled plasmids were slightly higher in both the steady-state and anisotropy decay measurements. These results indicate that Ru-BD can be applied in the study of both bending and torsional dynamics of nucleic acids.  相似文献   

18.
19.
Supercoiled plasmids are an important component of gene-based delivery vehicles. A number of production methods for clinical applications have been developed, each resulting in very high-quality product with low levels of residual contaminants. There is, however, no consensus on the optimal methods to characterize plasmid quality, and further, to determine if these methods are predictive of either product stability or biological activity. We have produced two plasmids using four production purification methodologies based on PolyFlo and hydrophobic interaction chromatography (HIC), either alone or in tandem processes. In each case, the product was analyzed using standard molecular biological methods. We also performed a number of biophysical analyses such as dynamic light scattering (DLS), circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Minimal differences were detected among the preparations based on the more standard molecular biological methods. Some small differences were detected, however, using biophysical techniques, particularly FTIR and DSC, which may reflect small variations in plasmid tertiary structure and thermal stability. Stability after heat exposure at 60 degrees C, exposure to fetal bovine serum and long-term storage at 4 degrees C varied between plasmids. One plasmid showed no difference in stability depending on the production process, but the other showed significant differences. Evaluation in vivo in models for gene immunization and gene therapy showed significant differences in the response depending on the method of purification. Preparations using a tandem process of PolyFlo used in two separation modes provided higher biological activity compared to a tandem HIC/PolyFlo process or either resin used alone in a single column process. These data indicate that the process by which supercoiled plasmids are made can influence plasmid stability and biological activity and emphasize the need for more rigorous methods to evaluate supercoiled plasmids as gene-delivery vehicles.  相似文献   

20.
Yeasts represent one class of host for the production of recombinant proteins. Heterologous DNA is usually introduced into yeast strains in the form of multi-copy plasmids. During production, protein expression levels and rates are often limited by the stability of the recombinant organism. In this paper, we review the major factors affecting the stability of yeast strains containing multi-copy recombinant plasmids. Models for predicting plasmid loss are summarised, comparisons are made with relevant bacterial systems and strategies are described for overcoming such problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号