首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-3 amino derivatives of ddT, AZT, 3′-FddT, and D4T were prepared by electrophilic amination of the parent compounds. Although compounds , , and were essentially inactive, N-3 amino AZT (RP67042) maintained activity and displayed lower toxicity and a longer plasmatic halflife compared to AZT.  相似文献   

2.
3.
4.
PCILO (Perturbative Configuration Interaction using Localised Orbitals) computations have been carried out for three 6-azapyrimidine nucleosides, 6-azauridine, 6-azacytidine and 6-azathymidine, for both C(2')-endo and C(3')-endo pucker of the sugar ring. The results indicate a syn (chiCN=180 degrees) conformation followed by chiCN=90 degrees and gg conformation for C(3')-endo 6-aza analogs as compareed to the anti (chiCN=0 degrees) and gg conformation preferred by the corresponding pyrimidine nucleosides. For C(2')-endo sugar geometry, 6-azauridine and 6-azacytidine prefer, respectively, chiCN=0 degrees (anti) and phi C(4')-C(5')=60 degrees C (gg) and chiCN-240 degrees (syn) and phi C(4')-C(5')=120 degrees. The corresponding nucleosides, uridine and cytidine, show a preference for syn (chiCN=240 degrees) and gg and anti(chiCN=0 degrees) and gg , respectively. The X-ray crystallographic conformations of 6-azauridine and 6-azacytidine have been attributed to intermolecular hydrogen bonding and crystal packing forces. The results of PMR, CD and ORD studies on 6-azauridine and 6-azacytidine in aqueous solutions are in agreement with the PCILO predictions.  相似文献   

5.
The reaction of NDP kinase with antiviral nucleoside triphosphates used in antiviral therapies was studied at the presteady state by fluorescence stopped-flow and compared with the steady-state parameters. The affinity of the analogs was determined by fluorescence titration of a mutated enzyme with an inserted Trp in the binding site. The lack of the 3' hydroxyl in analogs is shown to decrease the kcat more than the KD.  相似文献   

6.
Members of the concentrative nucleoside transporter (CNT) family (SLC28) mediate the transport of naturally-occurring nucleosides, and nucleoside analog drugs across the plasma membrane of epithelial cells. Each of the three CNT family members has a distinct specificity for naturally occurring nucleosides, and residues that contribute to the specificity of each transporter have been identified. In contrast, the molecular determinants of specificity for synthetic nucleoside analogs are not known. In this study, we take advantage of the large species difference that exists between human and rat CNT2 (hCNT2 and rCNT2) in their ability to transport the nucleoside analog drug cladribine, 2CdA, (rCNT2 > > > hCNT2) to identify the critical domains and amino acid residues that contribute to the observed difference in specificity between CNT2 orthologs. Using chimeric proteins of human and rat CNT2, we determined that the C-terminal half of CNT2 contained the determinants of 2CdA selectivity. We replaced key residues in the C terminus of hCNT2 with the equivalent residue in rCNT2. One residue in the C-terminal portion of CNT2 was found to significantly contribute to 2CdA selectivity: hCNT2-S354A. This mutant caused an increase of 5-6-fold over hCNT2. The 2-chloro pharmacophore, rather than the 2'-deoxyribose was responsible for the reduced 2CdA uptake by hCNT2. Our data are consistent with a model in which an increased capability for hydrogen bonding in critical amino acids that reside in the C terminus of rCNT2 contributes to its enhanced selectivity for 2CdA.  相似文献   

7.
PCILO (perturbative configuration interaction using localized orbitals) computations have been carried out for the conformational properties of 8-azapurine nucleosides. The results indicate an anti conformation for Xcn and a gg conformation for phiC(4')-C(5') for C(2')-endo 8-aza analogs compared to the syn and gg conformation for the corresponding purine nucleosides. For C(3')-endo sugar puckering, both molecules prefer the syn conformation due to intramolecular hydrogen bonding between O(5')-H of the sugar and N(3) of the base, the preference being more profound in 8-aza analogs. The crystallographic conformation 8-azaadenosine has been attributed to crystal forces. The available NMR data on 8-azapurine nucleosides are in agreement with the PCILO predictions.  相似文献   

8.
Bacillus anthracis, which causes anthrax, has attracted attention because of its potential use as a biological weapon. The risk of multidrug resistance against B. anthracis increases the need for antibiotics with new molecular targets. Nucleoside analogs are well-known antiviral and anticancer prodrugs, and thymidine kinase catalyzes the rate-limiting step in the activation of pyrimidine nucleoside analogs used in chemotherapy. The thymidine kinase gene from B. anthracis Sterne strain (34F2) (Ba-TK) was cloned and expressed in E. coli, and the product was purified and characterized regarding its substrate specificity. Ba-TK phosphorylated pyrimidine nucleosides and all natural nucleoside triphosphates served as phosphate donors. Size exclusion chromatography indicated a dimeric form of Ba-TK, regardless of the presence of ATP. Thymidine was the most efficient substrate with a low K(m) value (0.6 microM) and a V(max) of 3.3 micromol dTMP mg(-1) min(-1), but deoxyuridine (K(m)=4.2 microM, V(max)=4.1 micromol dUMP mg(-1) min(-1)) was also a good substrate. Several pyrimidine analogs were also tested and analogs with 5-position modifications showed higher activities compared to analogs with 3'- and N3-position modifications. Deoxyuridine analogs were the most potent inhibitors of B. anthracis growth in vitro. These results may be used to guide future development of nucleoside analogs against B. anthracis.  相似文献   

9.
10.
11.
The use of Boc as a nucleobase-protecting group in the synthesis of sugar-modified thymidine analogs is reported. Boc was easily inserted at N(3) by a simple and high-yielding reaction and found to be stable to standard treatments for the removal of Ac and (t) BuMe(2) Si (TBDMS) groups, as well as to ZnBr(2) -mediated 4,4'-dimethoxytrityl (DMTr) deprotection. Boc Protection proved to be completely resistant to the strong basic conditions required to regioselectively achieve O-alkylation, therefore, providing synthetic access to a variety of sugar-alkylated nucleoside analogs. To demonstrate the feasibility of this approach, two 3'-O-alkylated thymidine analogs have been synthesized in high overall yields and fully characterized.  相似文献   

12.
In vivo labeling of DNA with thymidine and thymidine analogs has long been a cornerstone of replication studies. Unfortunately, yeast lack a thymidine salvage pathway and thus do not incorporate exogenous thymidine. Specifically, yeast neither efficiently take up exogenous thymidine from their growth media nor phosphorylate it to thymidylate, the precursor of dTTP. We have overcome these problems in fission yeast by expressing the human equilibrative nucleoside transporter 1 (hENT1) along with herpes simplex virus thymidine kinase (tk). hENT1 tk cells are healthy and efficiently incorporate exogenous thymidine and thymidine analogs. We present protocols for labeling DNA with tritiated thymidine, for in situ detection of incorporated BrdU by immunofluorescence, for double labeling with CldU and IdU, for CsCl gradient separation of IdU-labeled DNA, and for using hENT1 and tk as both positive and negative selection markers.  相似文献   

13.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial rate limiting phosphorylation of deoxynucleosides and are essential enzymes for mitochondrial function. Chemotherapy using nucleoside analogs is often associated with mitochondrial toxicities. Here we showed that incubation of U2OS cells with didanosine (ddI, 2′,3′-dideoxyinosine), a purine nucleoside analog used in the highly active antiretroviral therapy (HAART), led to selective degradation of both mitochondrial TK2 and dGK while the cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) were not affected. Addition of guanosine to the ddI-treated cells prevented the degradation of mitochondrial TK2 and dGK. The levels of intracellular reactive oxygen species and protein oxidation in ddI-treated and control cells were also measured. The results suggest that down-regulation of mitochondrial TK2 and dGK may be a mechanism of mitochondrial toxicity caused by antiviral and anticancer nucleoside analogs.  相似文献   

14.
15.
The beta-anomers of N-ribofuranosylnicotine-3-carboxamide (beta-NAR) and its nicotinic acid analog (beta-NaR) were obtained by stereoselective synthesis via glycosylation of the presilylated bases under Vorbruggen's protocol. A NAR analog, methylated in position 3 of the ribosylic moiety, is also reported.  相似文献   

16.
17.
18.
19.
Several fluorosulfonylbenzoyl /FSB/ purine and pyrimidine nucleoside analogs of the clinically useful antimetabolites which belong to endo affinity labeling compounds were synthetized. Structures were confirmed by both 1H NMR and UV spectroscopy and by elemental analysis. Procedure for preparation of microamount of [3H] FSB-araC was developed. Bonding of radioactive FSB-araC to nucleotide utilizing enzymes in K562 myeloblasts soluble protein extract was compared with araCTP-degradating activities in this extract after DEAE-cellulose column chromatography. There was found that five major peaks of the radioactivity bound to the protein coincident with peaks of araCTP degradation. Bonding of [3H] FSB-araC in CCRF-CEM lymphoblasts exhibits only 3 major peaks of the bound radioactivity. This result correlates with the higher sensitivity of the CEM cells to araC.  相似文献   

20.
Ureaplasma urealyticum (U. urealyticum), belonging to the class Mollicutes, is a human pathogen colonizing the urogenital tract and causes among other things respiratory diseases in premature infants. We have studied the salvage of pyrimidine deoxynucleosides in U. urealyticum and cloned a key salvage enzyme, thymidine kinase (TK) from U. urealyticum. Recombinant Uu-TK was expressed in E. coli, purified and characterized with regards to substrate specificity and feedback inhibition. Uu-TK efficiently phosphorylated thymidine (dThd) and deoxyuridine (dUrd) as well as a number of pyrimidine nucleoside analogues. All natural ribonucleoside/deoxyribonucleoside triphosphates, except dTTP, served as phosphate donors, while dTTP was a feedback inhibitor. The level of Uu-TK activity in U. urealyticum extracts increased upon addition of dUrd to the growth medium. Fluoropyrimidine nucleosides inhibited U. urealyticum and M. pneumoniae growth and this inhibitory effect could be reversed by addition of dThd, dUrd or deoxytetrahydrouridine to the growth medium. Thus, the mechanism of inhibition was most likely the depletion of dTTP, either via a blocked thymidine kinase reaction and/or thymidylate synthesis step and these metabolic reactions should be suitable targets for antimycoplasma chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号