首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A bacterium, strain PC-07, previously isolated as part of a coculture capable of growing on p-cresol under anaerobic conditions with nitrate as the acceptor was identified as an Achromobacter sp. The first enzyme of the pathway, p-cresol methylhydroxylase, which converts its substrate into p-hydroxybenzyl alcohol, was purified. The enzyme had an Mr of 130,000 and the spectrum of a flavocytochrome. It was composed of flavoprotein subunits of Mr 54,000 and cytochrome subunits of Mr 12,500. The midpoint redox potential of the cytochrome was 232 mV. The Km and kcat for p-cresol were 21 microM and 112 s-1 respectively, and the Km for phenazine methosulfate, the artificial acceptor used in the assays, was determined to be 1.7 mM. These properties place the enzyme in the same class as the p-cresol methylhydroxylases from aerobically isolated Pseudomonas spp.  相似文献   

2.
Constitutive synthesis of enzymes responsible for methyl group oxidation in 3,5-xylenol degradation and an associated p-cresol methylhydroxylase in Pseudomonas putida NCIB 9869 was shown by their retention at high specific activities in cells transferred from 3,5-xylenol medium to glutamate medium. The specific activities of other enzymes of the 3,5-xylenol pathway declined upon removal of aromatic substrate, consistent with their inducible control. Specific activities of the methyl-oxidizing enzymes showed an eventual decline concomitant with a decrease in the fraction of bacteria capable of growth with 3,5-xylenol; a simultaneous loss of the ability to grow with m-hydroxybenzoate was also observed. The property of 3,5-xylenol utilization could be transferred to another strain of P. putida. It is proposed that enzymes of the 3,5-xylenol pathway and those for conversion of p-cresol to p-hydroxybenzoate are plasmid encoded, that the early methyl-oxidizing enzymes are expressed constitutively, and that the later enzymes are inducible.  相似文献   

3.
Whole cells of Pseudomonas putida N.C.I.B 9869, when grown on either 3,5-xylenol or p-cresol, oxidized both m- and p-hydroxybenzyl alcohols. Two distinct NAD+-dependent m-hydroxybenzyl alcohol dehydrogenases were purified from cells grown on 3,5-xylenol. Each is active with a range of aromatic alcohols, including both m- and p-hydroxybenzyl alcohol, but differ in their relative rates with the various substrates. An NAD+-dependent alcohol dehydrogenase was also partially purified from p-cresol grown cells. This too was active with m- and p-hydroxybenzyl alcohol and other aromatic alcohols, but was not identical with either of the other two dehydrogenases. All three enzymes were unstable, but were stabilized by dithiothreitol and all were inhibited with p-chloromercuribenzoate. All were specific for NAD+ and each was shown to catalyse conversion of alcohol into aldehyde.  相似文献   

4.
Anoxic cell extracts of a denitrifying bacterial isolate (PC-07) were shown to oxidize p-cresol to p-hydroxybenzoate. Oxidation of the substrate was independent of molecular oxygen and required nitrate as the natural terminal electron acceptor. Two enzyme activities were implicated in the pathway utilized by PC-07. A p-cresol methylhydroxylase mediated the oxidation of p-cresol to p-hydroxybenzaldehyde, which was further oxidized to p-hydroxybenzoate by an NAD+-dependent dehydrogenase. The PC-07 methylhydroxylase was partially purified by anion-exchange chromatography. The protein appeared to be a multifunctional flavocytochrome, which first oxidized p-cresol to p-hydroxybenzyl alcohol, which was then oxidized to p-hydroxybenzaldehyde. The identity of the aldehyde was confirmed by mass spectroscopy. The PC-07 methylhydroxylase had a limited substrate range and required an alkyl-substituted phenolic ring with a hydroxyl group in the para position. From the available evidence, p-cresol, a naturally occurring phenol, exhibited the greatest affinity to the enzyme and therefore may be its natural substrate.  相似文献   

5.
The enzyme that catalyses the hydroxylation of the methyl group of p-cresol was purified from Pseudomonas putida. It has mol.wt. 115000 and appears to contain two subunits of equal molecular weight. One subunit is a c-type cytochrome and the other is a flavoprotein. Reduction of the cytochrome occurred on addition of substrate. The same enzyme catalyses both p-cresol hydroxylation and the further oxidation of the product, 4-hydroxybenzyl alcohol. The stoicheiometry of acceptor reduced per molecule of substrate oxidized is that for two dehydrogenation reactions. The Km for p-cresol is 7.3 x 10(-6) M and that for 4-hydroxybenzyl alcohol is 47.6 x 10(-6) M. The enzyme, which is assayed with phenazine methosulphate as electron acceptor, was stimulated by particulate material, which probably contains the acceptor in vivo.  相似文献   

6.
Single crystals of p-cresol methylhydroxylase, a flavocytochrome c from Pseudomonas putida, have been prepared. The crystals are orthorhombic, space group P212121 with unit cell parameters; a = 140.3 A, b = 130.6 A and c = 74.1 A. They contain a single non-symmetric dimer per asymmetric unit and diffract to at least 2.5 A resolution.  相似文献   

7.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   

8.
Engst S  Kuusk V  Efimov I  Cronin CN  McIntire WS 《Biochemistry》1999,38(50):16620-16628
The alpha(2)beta(2) flavocytochrome p-cresol methylhydroxylase (PCMH) from Pseudomonas putida is composed of a flavoprotein homodimer (alpha(2) or PchF(2); M(r) = 119 kDa) with a cytochrome monomer (beta, PchC; M(r) = 9.3 kDa) bound to each PchF subunit. Escherichia coli BL21(DE3) has been transformed with a vector for expression of the pchF gene, and PchF is overproduced by this strain as the homodimer. During purification, it was recognized that some PchF had FAD bound, while the remainder was FAD-free. However, unlike PchF obtained from PCMH purified from P. putida, FAD was bound noncovalently. The FAD was conveniently removed from purified E. coli-expressed PchF by hydroxyapatite chromatography. Fluorescence quenching titration indicated that the affinity of apo-PchF for FAD was sufficiently high to prevent the determination of the dissociation constant. It was found that p-cresol was virtually incapable of reducing PchF with noncovalently bound FAD (PchF(NC)), whereas 4-hydroxybenzyl alcohol, the intermediate product of p-cresol oxidation by PCMH, reduced PchF(NC) fairly quickly. In contrast, p-cresol rapidly reduced PchF with covalently bound FAD (PchF(C)), but, unlike intact PCMH, which consumed 4 electron equiv/mol when titrated with p-cresol (2 electrons from p-cresol and 2 from 4-hydroxybenzyl alcohol), PchF(C) accepted only 2 electron equiv/mol. This is explained by extremely slow release of 4-hydroxybenzyl alcohol from reduced PchF(C). 4-Hydroxybenzyl alcohol rapidly reduced PchF(C), producing 4-hydroxybenzaldehyde. It was demonstrated that p-cresol has a charge-transfer interaction with FAD when bound to oxidized PchF(NC), whereas 4-bromophenol (a substrate analogue) and 4-hydroxybenzaldehyde have charge-transfer interactions with FAD when bound to either PchF(C) or PchF(NC). This is the first example of a "wild-type" flavoprotein, which normally has covalently bound flavin, to bind flavin noncovalently in a stable, redox-active manner.  相似文献   

9.
An improved procedure is described for the isolation of the flavocytochrome p-cresol methylhydroxylase (PCMH) from Pseudomonas putida as well as methods for the separation of its subunits in native form and their recombination to reconstitute the original flavocytochrome. Under appropriate conditions, the reconstitution is stoichiometric and results in complete recovery of the catalytic activity of the flavocytochrome. The separated flavoprotein subunit shows only 2% of the catalytic activity of the original enzyme on p-cresol and is characterized by converging lines in bisubstrate kinetic analysis, while the intact and reconstituted enzymes show parallel line kinetics in steady-state experiments. van't Hoff plots of the dependence of the dissociation constant of the subunits of PCMH on temperature show a break near 15 degrees C. Above this temperature, KD is characterized by a positive delta H value of 12.6 kcal mol-1; below 15 degrees C, the dissociation is essentially temperature independent. The subunit dissociation is strongly dependent on ionic strength in the oxidized form of PCMH but not in the reduced form of the enzyme. Reduction also lowers the KD significantly, while substrates and nonoxidizable competitive inhibitors lower the dissociation constant even further, suggesting a conformation change. Combination of the subunits to form PCMH entails a small but measurable change in the absorption spectra of the component proteins.  相似文献   

10.
The enzyme 4-ethylphenol methylenehydroxylase was purified from Pseudomonas putida JD1 grown on 4-ethylphenol. It is a flavocytochrome c for which the Mr was found to be 120,000 by ultracentrifuging and 126,000 by gel filtration. The enzyme consists of two flavoprotein subunits each of Mr 50,000 and two cytochrome c subunits each of Mr 10,000. The redox potential of the cytochrome is 240 mV. Hydroxylation proceeds by dehydrogenation and hydration to give 1-(4'-hydroxyphenyl)ethanol, which is also dehydrogenated by the same enzyme to 4-hydroxyacetophenone. The enzyme will hydroxylate p-cresol but is more active with alkylphenols with longer-chain alkyl groups. It is located in the periplasm of the bacterium.  相似文献   

11.
12.
p-Cresol methylhydroxylase. Assay and general properties.   总被引:5,自引:0,他引:5       下载免费PDF全文
p-Cresol methylhydroxylase from Pseudomonas putida, an anaerobic dehydrogenase that catalyses the oxidation of p-cresol to p-hydroxybenzyl alcohol and then to p-hydroxybenzaldehyde, is an enzyme of great interest in several respects. One of these is the fact that its flavoprotein and cytochrome c subunits may be reversibly dissociated with ease, with full regeneration of the activity and its native properties on recombining the components. Bisubstrate kinetic analysis of the unresolved enzyme gives parallel-line kinetics in double-reciprocal plots, whereas the reaction of the separated flavoprotein subunit with substrates is described by converging lines. The mechanistic implications of these behaviours are discussed. Reductive titration with dithionite results in the uptake of 3 electrons by the enzyme, with the intermediate formation of the anionic flavin radical [McIntire, Edmondson, Hopper & Singer (1981) Biochemistry 20, 3068-3075]. Reductive titration with substrates resulted initially only in reduction of the cytochrome subunit, followed by formation of the anionic radical and finally the fully reduced enzyme. These observations suggest rapid intermolecular electron transfer between p-cresol methylhydroxylase molecules. This paper also examines the effect of pH and ionic strength on the activity and specificity of the enzyme with respect to substrates and natural, as well as artificial, electron acceptors. The absorption coefficients of the enzyme and of its subunits in various oxidation states are also presented.  相似文献   

13.
The degradation of the toxic phenol p-cresol by Pseudomonas bacteria occurs by way of the protocatechuate metabolic pathway. The first enzyme in this pathway, p-cresol methylhydroxylase (PCMH), is a flavocytochrome c. The enzyme first catalyzes the oxidation of p-cresol to p-hydroxybenzyl alcohol, utilizing one atom of oxygen derived from water, and yielding one molecule of reduced FAD. The reducing electron equivalents are then passed one at a time from the flavin cofactor to the heme cofactor by intramolecular electron transfer, and subsequently to cytochrome oxidase within the periplasmic membrane via one or more soluble electron carrier proteins. The product, p-hydroxybenzyl alcohol, can also be oxidized by PCMH to yield p-hydroxybenzaldehyde. The fully refined X-ray crystal structure of PCMH in the native state has been obtained at 2. 5 A resolution on the basis of the gene sequence. The structure of the enzyme-substrate complex has also been refined, at 2.75 A resolution, and reveals significant conformational changes in the active site upon substrate binding. The active site for substrate oxidation is deeply buried in the interior of the PCMH molecule. A route for substrate access to the site has been identified and is shown to be governed by a swinging-gate mechanism. Two possible proton transfer pathways, that may assist in activating the substrate for nucleophilic attack and in removal of protons generated during the reaction, have been revealed. Hydrogen bonding interactions between the flavoprotein and cytochrome subunits that stabilize the intramolecular complex and may contribute to the electron transfer process have been identified.  相似文献   

14.
Periplasmic location of p-cresol methylhydroxylase in Pseudomonas putida   总被引:4,自引:0,他引:4  
The cellular location of the flavocytochrome c, p-cresol methylhydroxylase was investigated in two strains of Pseudomonas putida. In both cases the enzymes were shown to be located in the periplasmic fraction by their release during treatment of the bacteria with EDTA and lysozyme in a solution containing a high concentration of sucrose. For strain NCIB 9869 the finding is in accord with the suggestion that the physiological acceptor for the enzyme is azurin as this too was shown to be located mostly in the periplasm.  相似文献   

15.
Two separate enzymes, which determine resistance to inorganic mercury and organomercurials, have been purified from the plasmid-bearing Escherichia coli strain J53-1(R831). The mercuric reductase that reduces Hg2+ to volatile Hg0 was purified about 240-fold from the 160,000 X g supernatant of French press disrupted cells. This enzyme contains bound FAD, requires NADPH as an electron donor, and requires the presence of a sulfhydryl compound for activity. The reductase has a Km of 13 micron HgCl2, a pH optimum of 7.5 in 50 mM sodium phosphate buffer, an isoelectric point of 5.3, a Stokes radius of 50 A, and a molecular weight of about 180,000. The subunit molecular weight, determined by gel electrophoresis in the presence of sodium dodecyl sulfate, is about 63,000 +/- 2,000. These results suggest that the native enzyme is composed of three identical subunits. The organomercurial hydrolase, which breaks the mercury-carbon bond in compounds such as methylmercuric chloride, phenylmercuric acetate, and ethylmercuric chloride, was purified about 38-fold over the starting material. This enzyme has a Km of 0.56 micron for ethylmercuric chloride, a Km of 7.7 micron for methylmercuric chloride, and two Km values of 0.24 micron and over 200 micron for phenylmercuric acetate. The hydrolase has an isoelectric point of 5.5, requires the presence of EDTA and a sulfhydryl compound for activity, has a Stokes radius of 24 A, and has a molecular weight of about 43,000 +/- 4,000.  相似文献   

16.
1. Data are provided that indicate that the rat brain acetoacetyl-CoA deacylase is almost exclusively mitochondrial. Developmental studies show that this enzyme more than doubles its activity during suckling (0--21 days) and then maintains this activity in adults (approx. 1.1 units/g wet wt.). 2. Kinetic studies (on the acetoacetyl-CoA deacylase) in a purified brain mitochondrial preparation give a Vmax. of 47 nmol/min per mg of protein, and a Km for acetoacetyl-CoA of 5.2 micron and are compatible with substrate inhibition by acetoacetyl-CoA above concentrations of 47 micron. 3. The total brain 3-hydroxy-3-methyl-glutaryl-CoA synthase remains constant in the developing and adult rat brain (approx. 1.2 units/g wet wt.). This enzyme is located in both the mitochondrial and cytosolic fractions. During suckling (0--21 days) the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase represents approx. one-third of the total, but this increases markedly to about 60% of the total in the adult. The cytosolic enzyme correspondingly falls to approx. 40% of the total. 4. The role of the acetoacetyl-CoA deacylase in providing cytosolic acetoacetate for biosynthetic activities in the developing brain is discussed.  相似文献   

17.
1. A dye-linked alcohol dehydrogenase was purified 20-fold from extracts of Rhodopseudomonas acidophila 10050 grown anaerobically in the light on methanol/HCO3-. 2. The enzyme resembled many previously reported methanol dehydrogenases from other methylotrophic organisms in coupling to phenazine methosulphate, requiring ammonia as an activator, possessing a pH optimum of 9 and a mol.wt. of approx. 116000. In many other respects the enzyme showed singular properties. 3. The stability of the enzyme under various conditions of temperature and pH was studied. 4. Primary aliphatic amines containing up to nine carbon atoms (the longest tested) were better activators than ammonia. 5. A wide range of primary alcohols and aldehydes served as substrates, with apparent Km values ranging from 57 mM for methanol to 6 micron for ethanol. 6. O2 was an inhibitor competitive with respect to the alcohol substrate. In the presence of O2, apparent Km values of 145 mM were recorded for methanol. 6. Cyanide and alphaalpha'-bipyridine were inhibitors competitive with respect to the amine activator. 7. The properties of the enzyme from Rhodopseudomonas acidophila are compared with those of similar enzymes from other organisms, and implications of the salient differences are discussed.  相似文献   

18.
The complete sequence of the 21-kDa cytochrome subunit of the flavocytochrome c (FC) from the purple phototrophic bacterium Chromatium vinosum has been determined to be as follows: EPTAEMLTNNCAGCHG THGNSVGPASPSIAQMDPMVFVEVMEGFKSGEIAS TIMGRIAKGYSTADFEKMAGYFKQQTYQPAKQSF DTALADTGAKLHDKYCEKCHVEGGKPLADEEDY HILAGQWTPYLQYAMSDFREERRPMEKKMASKL RELLKAEGDAGLDALFAFYASQQ. The sequence is the first example of a diheme cytochrome in a flavocytochrome complex. Although the locations of the heme binding sites and the heme ligands suggest that the cytochrome subunit is the result of gene doubling of a type I cytochrome c, as found with Azotobacter cytochrome c4, the extremely low similarity of only 7% between the two halves of the Chromatium FC heme subunit rather suggests that gene fusion is at the evolutionary origin of this cytochrome. The two halves also require a single residue internal deletion for alignment. The first half of the Chromatium FC heme subunit is 39% similar to the monoheme subunit of the FC from the green phototrophic bacterium Chlorobium thiosulfatophilum, but the second half is only 9% similar to the Chlorobium subunit. The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT. It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits. The N terminus of the flavin subunit is homologous to a number of flavoproteins, including succinate dehydrogenase, glutathione reductase, and monamine oxidase. There is no obvious homology to the Pseudomonas putida FC flavin subunit, which suggests that the two types of flavocytochrome c arose by convergent evolution. This is consistent with the dissimilar enzyme activities of FC as sulfide dehydrogenase in the phototrophic bacteria and as p-cresol methylhydroxylase in Pseudomonas. We also present a sequence "fingerprint" pattern for the recognition of FAD-binding proteins which is an extended version of the consensus sequence previously presented (Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101-107) for nucleotide binding sites.  相似文献   

19.
A nucleoplasmic histone kinase activity was isolated from livers of adult rats and purified 39-fold compared with whole nuclei by ultracentrifugation of the nuclear extract and Sephadex G-200 gel filtration in the presence of cyclic AMP. Analysis by polyacrylamide-gel electrophoresis as well as by gel filtration indicates a mol.wt. of approx. 60,000 for the catalytic subunit and 130000-150000 for the cyclic AMP-binding activity. The purified enzyme displays a 20-fold greater preference for histone fractions 1 and 2b than for any non-histone substrate, including alpha-casein. Endogenous protein in the preparation is not appreciably phosphorylated. The unfractioned enzyme is stimulated significantly by cyclic GMP, cyclic IMP and dibutyryl cyclic AMP as well as by cyclic AMP. The catalytic reaction requires Mg2+ (Km 1.9mM) and ATP (Km 15.4 micron). Half-maximal activity of the enzyme is observed with histone 2b at 12micron and histone 1 at a higher substrate concentration. The pH optima are 6.1 and 6.5 with histones 2b and 1 respectively. This nuclear protein kinase appears to be distinct from other nuclear enzymes that have been reported, on the basis of histone specificity, univalent-salt-sensitivity, pH optima and nuclear location. However, the enzyme possesses many properties similar to those of the cytoplasmic kinases, including cyclic AMP-dependence, Mg2+ and ATP affinities and pH optima. It differs from cytoplasmic protein kinase type I, the major form in the liver, with respect to bivalent-cation effects and response to the heat-stable protein kinase inhibitor protein isolated from ox heart.  相似文献   

20.
D J Hopper 《FEBS letters》1983,161(1):100-102
The redox potential of the cytochrome c in 5 flavocytochrome c proteins, all p-cresol methylhydroxylases purified from species of Pseudomonas, was measured. All gave similar values ranging from 226-250 mV. Two of the enzymes, from Pseudomonas putida NC1B 9866 and NC1B 9869, were resolved into their flavoprotein and cytochrome subunits and the redox potentials of the isolated cytochrome c subunits measured. The values for these were 60-70 mV below those for the whole enzymes but, in both cases, reconstitution of active enzyme by addition of the flavoprotein subunit restored the original potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号