首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the age-related changes in thyroid hormone (TH) effects on cardiac glucose transporter one (GLUT-1) and four (GLUT-4) isoforms, male Fischer 344 rats at 4, 12, and 25 months of age were studied at euthyroid, hyperthyroid and hypothyroid conditions. Hyperthyroidism was induced with daily intraperitoneal injections of triiodothyronine (15 microg/100 gm) for 10 days. Hypothyroidism was achieved with 0.025% methimazole in the drinking water for 4 weeks. Immunoblot analysis indicated that at euthyroid basal conditions GLUT-1 protein was not significantly altered with age while GLUT-4 protein was significantly reduced in 25 month old rats (82.0 +/- 28.8% of a 4 month old rat p <0.01). In 4 months old rats, GLUT-1 was increased in both hypothyroidism (432.5 +/- 208.7% of age-matched euthyroid control) and to a lesser extent in hyperthyroidism (242.0 +/- 93.3% of control) p<0.01. In 25 month old rats, hyperthyroidism was also associated with increased GLUT-1 mass (190.8 +/- 117.6% of age-matched euthyroid control) p<0.01. Hypothyroidism in this age group was not associated with significant change in GLUT-1 protein. The cardiac GLUT-4 protein was increased during both hypothyroidism and hyperthyroidism. The changes of GLUT-4 in aged rats were similar to those found in young rats. It is concluded that TH effect on GLUT-1 expression in the heart is altered with age while TH effects on GLUT-4 are age independent.  相似文献   

2.
The increase in glucose transport that occurs when chicken embryo fibroblasts (CEFs) are transformed by src is associated with an increase in the amount of type 1 glucose transporter protein, and we have previously shown that this effect is due to a decrease in the degradation rate of this protein. The rate of CEF type 1 glucose transporter biosynthesis and the level of its mRNA are unaffected by src transformation. To study the molecular basis of this phenomenon, we have been isolating chicken glucose transporter cDNAs by hybridization to a rat type 1 glucose transporter probe at low stringency. Surprisingly, these clones corresponded to a message encoding a protein which has most sequence similarity to the human type 3 glucose transporter and which we refer to as CEF-GT3. CEF-GT3 is clearly distinct from the CEF type 1 transporter that we have previously described. Northern (RNA) analysis of CEF RNA with CEF-GT3 cDNA revealed two messages of 1.7 and 3.3 kb which were both greatly induced by src transformation. When the CEF-GT3 cDNA was expressed in rat fibroblasts, a three-to fourfold enhancement of 2-deoxyglucose uptake was observed, indicating that CEF-GT3 is a functional glucose transporter. Northern analyses using a CEF-GT3 and a rat type 1 probe demonstrated that there is no hybridization between different isoforms but that there is cross-species hybridization between the rat type 1 probe and the chicken homolog. Southern blot analyses confirmed that the chicken genomic type 1 and type 3 transporters are encoded by distinct genes. We conclude that CEFs express two types of transporter, type 1 (which we have previously reported to be regulated posttranslationally by src) and a novel type 3 isoform which, unlike type 1, shows mRNA induction upon src transformation. We conclude that src regulates glucose transport in CEFs simultaneously by two different mechanisms.  相似文献   

3.
4.
5.
Thyroid hormone exerts positive inotropic effects on the heart mediated in part by its regulation of calcium transporter proteins, including sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2), phospholamban (PLB), and Na(+)/Ca(2+) exchanger (NCX). To further understand the potential cardiac chamber-specific effects of thyroid hormone action, we compared the triiodo-L-thyronine (T(3)) responsiveness of calcium transporter proteins in atrial versus ventricular tissues. Rats were rendered hypothyroid by ingestion of propylthiouracil, and a subgroup of animals was treated with T(3) for 7 days (7 microg/day by constant infusion). Atrial and left ventricular (LV) tissue homogenates were analyzed for expression of SERCA2, PLB, and NCX proteins by Western blot analysis. SERCA2 protein significantly decreased by 50% in hypothyroid LV and was normalized by T(3) treatment. In contrast, SERCA2 protein in atria was unaltered in the hypothyroid state. PLB protein expression significantly increased by 1.6- and 5-fold in the hypothyroid LV and atria, respectively, and returned to euthyroid levels with T(3) treatment. Expression of NCX protein showed a greater response to T(3) treatment in atria tissue than in ventricular tissue. Sarcoplasmic reticulum calcium cycling is determined in part by the ratio of SERCA2 to PLB. This ratio was sixfold higher in the atria compared with LV, suggesting that PLB may play a minor role in the regulation of SERCA2 function in normal atria. We conclude that calcium transporter proteins are responsive to thyroid hormone in a chamber-specific manner, with atria showing a greater change in protein content in response to T(3). The differential effect on atria may account for the occurrence of atrial rather than ventricular arrhythmias in response to even mild degrees of thyrotoxicosis.  相似文献   

6.
7.
In mouse blastocysts six facilitative glucose transporter isoforms (GLUT)1-4, 8 and 9 are expressed. We have used the mouse embryonic stem (ES) cell line D3 and spontaneously differentiating embryoid bodies (EB) to investigate GLUT expression and the influence of glucose during differentiation of early embryonic cells. Both ES cells and EBs (2d-20d) expressed GLUT1, 3, and 8, whereas the isoforms 2 and 4 were detectable exclusively in EBs. Differentiation-associated expression of GLUT was analyzed by double staining with stage-specific embryonic antigen (SSEA-1), cytokeratins (CK18, 19), nestin, and desmin. Similar to trophoblast cells in mouse blastocysts the outer cell layer of endoderm-like cells showed a high GLUT3 expression in early EBs. In 20-day-old EBs no GLUT3 protein and only minor GLUT3 mRNA amounts could be detected. A minimal glucose concentration of 5 mM applied during 2 and 8 days of EB culture resulted in up-regulated GLUT4, Oct-4 and SSEA-1 levels and a delay in EB differentiation. We conclude that GLUT expression depends on cellular differentiation and that the expression is modulated by glucose concentration. The developmental and glucose-dependent regulation of GLUT strongly suggests a functional role of glucose and glucose transporters in ES cell differentiation and embryonic development.  相似文献   

8.
9.
10.
A tandemly arranged multigene family encoding putative hexose transporters in Trypanosoma brucei has been characterized. It is composed of two 80% homologous groups of genes called THT1 (six copies) and THT2 (five copies). When Xenopus oocytes are microinjected with in vitro-transcribed RNA from a THT1 gene, they express a glucose transporter with properties similar to those of the trypanosome bloodstream-form protein(s). This THT1-encoded transport system for glucose differs from the human erythrocyte-type glucose transporter by its moderate sensitivity to cytochalasin B and its capacity to transport D-fructose. These properties suggest that the trypanosomal transporter may be a good target for antitrypanosomal drugs. mRNA analysis revealed that expression of these genes was life cycle stage dependent. Bloodstream forms express 40-fold more THT1 than THT2. In contrast, procyclic trypanosomes express no detectable THT1 but demonstrate glucose-dependent expression of THT2.  相似文献   

11.
Electroneutral Na absorption occurs in the intestine via sodium-hydrogen exchanger (NHE) isoforms NHE2 and NHE3. Bicarbonate and butyrate both stimulate electroneutral Na absorption through NHE. Bicarbonate- but not butyrate-dependent Na absorption is inhibited by cholera toxin (CT). Long-term exposure to butyrate also influences expression of apical membrane proteins in epithelial cells. These studies investigated the effects of short- and long-term in vivo exposure to butyrate on apical membrane NHE and mRNA, protein expression, and activity in rat ileal epithelium that had been exposed to CT. Ileal loops were exposed to CT in vivo for 5 h and apical membrane vesicles were isolated. 22Na uptake was measured by using the inhibitor HOE694 to identify NHE2 and NHE3 activity, and Western blot analyses were performed. CT reduced total NHE activity by 70% in apical membrane vesicles with inhibition of both NHE2 and NHE3. Reduced NHE3 activity and protein expression remained low following removal of CT but increased to control values following incubation of the ileal loop with butyrate for 2 h. In parallel there was a 40% decrease in CT-induced increase in cAMP content. In contrast, NHE2 activity partially increased following removal of CT and was further increased to control levels by butyrate. NHE2 protein expression did not parallel its activity. Neither NHE2 nor NHE3 mRNA content were affected by CT or butyrate. These results indicate that CT has varying effects on the two apical NHE isoforms, inhibiting NHE2 activity without altering its protein expression and reducing both NHE3 activity and protein expression. Butyrate restores both CT-inhibited NHE2 and NHE3 activities to normal levels but via different mechanisms.  相似文献   

12.
To understand the molecular mechanisms responsible for the sepsis-induced enhanced glucose uptake, we have examined the levels of GLUT4 and GLUT1 mRNA and protein in the adipose tissue of septic animals. Rats were challenged with a nonlethal septic insult where euglycemia was maintained and hexose uptake in adipose tissue was markedly elevated. Northern blot analysis of total RNA isolated from epididymal fat pads indicated differential regulation of the mRNA content for the two transporters: GLUT1 mRNA was increased 2.6 to 4.6-fold, while GLUT4 mRNA was decreased by 2.5 to 2.9-fold. Despite the difference in mRNA levels, both GLUT1 and GLUT4 protein were down regulated in plasma membranes (40% and 25%, respectively) and microsomal membranes (42% and 25%, respectively) of the septic animals. The increased glucose uptake cannot be explained by the membrane content of GLUT1 and GLUT4 protein. Thus, during hypermetabolic sepsis, increased glucose utilization by adipose tissue is dependent on alternative processes.  相似文献   

13.
We have examined by Northern blot analysis the expression of two members of the glucose transporter family of genes (GLUT-1 and GLUT-2) in regenerating liver and in hepatocytes cultured under various conditions. GLUT-1, although thought to be a growth-associated gene, is not expressed in normal or regenerating liver, whereas GLUT-2, a liver-specific gene, is abundant in normal liver and gradually up-regulated during liver regeneration. Conversely, in hepatocytes cultured conventionally on dried rat tail collagen (RTC) in the presence of EGF and insulin, which potentiate proliferation, GLUT-1 mRNA is rapidly and abundantly expressed, whereas GLUT-2 is depressed. To investigate the causes of this "switch" in glucose transporter expression seen when hepatocytes are removed from the liver and cultured under the conventional proliferative conditions, we examined the effects of specific growth factors and extracellular matrices on cultured hepatocytes. EGF, a potent liver mitogen, although causing a threefold induction of GLUT-1, was found to have no effect on GLUT-2 expression, suggesting that the increase in GLUT-2 seen in regenerating liver is not due to EGF. Inhibition of protein synthesis by cycloheximide in cultured hepatocytes does not prevent the induction of GLUT-1 mRNA. In addition, treatment of cells with cycloheximide appears to stabilize the GLUT-2 mRNA, preventing the usual down-regulation of this gene in cultured hepatocytes. The expression of the two glucose transporter mRNAs also differed when the hepatocytes were adherent to particular cell matrices. Culture of hepatocytes on a reconstituted basement membrane gel matrix (EHS) is known to restrain their growth and mediate high levels of differentiated hepatocytic functions that are lost under conventional culture conditions. Unlike cells on RTC, hepatocytes on EHS expressed low levels of GLUT-1 mRNA, and decreased GLUT-2 mRNA. TGF-beta, an attenuator of DNA synthesis, when added to cultures on RTC, substantially down-regulated GLUT-2 but had no effect on GLUT-1. We propose that the effectors, EGF, TGF-beta and basement membrane components, play a significant role in the regulation of expression of GLUT-1 and GLUT-2 in hepatocytes.  相似文献   

14.
15.
16.
Insulin-stimulated glucose transport activity and GLUT4 glucose transporter protein expression in rat soleus, red-enriched, and white-enriched skeletal muscle were examined in streptozotocin (STZ)-induced insulin-deficient diabetes. Six days of STZ-diabetes resulted in a nearly complete inhibition of insulin-stimulated glucose transport activity in perfused soleus, red, and white muscle which recovered following insulin therapy. A specific decrease in the GLUT4 glucose transporter protein was observed in soleus (3-fold) and red (2-fold) muscle which also recovered to control values with insulin therapy. Similarly, cardiac muscle displayed a marked STZ-induced decrease in GLUT4 protein that was normalized by insulin therapy. White muscle displayed a small but statistically significant decrease in GLUT4 protein (23%), but this could not account for the marked inhibition of insulin-stimulated glucose transport activity observed in this tissue. In addition, GLUT4 mRNA was found to decrease in red muscle (2-fold) with no significant alteration in white muscle. The effect of STZ-induced diabetes was time-dependent with maximal inhibition of insulin-stimulated glucose transport activity at 24 h in both red and white skeletal muscle and half-maximal inhibition at approximately 8 h. In contrast, GLUT4 protein in red and white muscle remained unchanged until 4 and 7 days following STZ treatment, respectively. These data demonstrate that red skeletal muscle displays a more rapid hormonal/metabolic-dependent regulation of GLUT4 glucose transporter protein and mRNA expression than white skeletal muscle. In addition, the inhibition of insulin-stimulated glucose transport activity in both red and white muscle precedes the decrease in GLUT4 protein and mRNA levels. Thus, STZ treatment initially results in a rapid uncoupling of the insulin-mediated signaling of glucose transport activity which is independent of GLUT4 protein and mRNA levels.  相似文献   

17.
Antibodies against human erythrocyte glucose transporters (GLUT-1) were used to determine if the transporters of embryonic and adult rat hearts have similar reactivity. On the basis of immunoblotting, these antibodies react more strongly with embryonic transporters than with adult ones. To determine if this phenomenon may be correlated with changes in the expression of transporter types during development, RNA isolated from either the embryonic or the adult rat heart was amplified by polymerase chain reaction (PCR) to identify the transporter species. Both GLUT-1 and GLUT-4 fragments were obtained among the PCR products. They were used for Northern blot analysis. The results indicate that the embryonic heart is rich in GLUT-1 mRNA; whereas the adult heart contains predominantly GLUT-4 mRNA. Thus, it appears that the major type of glucose transporter in rat heart switches from GLUT-1 to GLUT-4 during development.  相似文献   

18.
A panel of anti-thyroid hormone receptor (TR) antisera were generated to allow direct assay of the concentrations of the alpha 1 and beta 1 receptor isoforms in nuclear extracts from adult rat liver, kidney, brain and heart, and fetal brain. An antiserum, immunoglobulin G (IgG)-beta 1, raised against amino acid sequence 62-92 of the rat TR-beta 1 specifically precipitated only TR-beta 1 in vitro translation products. A second antiserum, IgG-alpha 1/beta, generated against a sequence that is identical in the ligand binding region of rat TR-alpha 1 and TR-beta isoforms immunoprecipitated both TR-alpha 1 and -beta 1 translation products. These IgG preparations were used to specifically immunoprecipitate thyroid hormone receptor binding activity from nuclear extracts. IgG-beta 1 cleared almost 80%, and the IgG-alpha 1/beta immunoprecipitated nearly all binding from hepatic nuclear extracts. This distribution of TR protein, 80% beta 1 and 20% alpha 1, is the same as previously reported for their respective mRNAs in liver. In heart, kidney, and brain IgG-beta 1 cleared 45, 43, and 28% of total binding, respectively, and IgG-alpha 1/beta cleared all T3 binding activity from these tissues. In agreement with an earlier study, marked variations in specific protein/mRNA ratios were noted among these tissues. Consistent with our earlier report of the presence of only very low levels of TR-beta 1 mRNA in fetal brain, IgG-beta 1 cleared just 5% of binding in this tissue. Studies using an antiserum (IgG-ch) generated against homologous segments of the hinge region in both TR-alpha 1 and -beta 1 yielded results which contrasted sharply with those of IgG-alpha 1/beta. Whereas IgG-ch could also immunoprecipitate virtually all binding from hepatic extracts it cleared only 40-50% of binding from the other tissues, including fetal brain in which TR-alpha 1 accounts for greater than 90% of binding protein. The data suggest the presence of posttranslational modification of the TR-alpha 1 protein in the hinge region, consistent with the presence in this segment of potential phosphorylation sites.  相似文献   

19.
Confirming the literature data the authors describe that the heart rate is smaller in the newborn rats than in adult ones and increases until the adult values during the first two weeks of life. On the other hand, the blood thyroid hormone exhibits the same pattern, showing an early postnatal increment. As, according the Adolph's data (1967), the heart rate enhancement is not due to the catecholamines, the authors suppose that such enhancement might conceivably depend on thyroid hormone increment.  相似文献   

20.
Three hexose transporter genes, the Na(+)/glucose cotransporters SGLT1 and SGLT3 (formerly SAAT1/pSGLT2) and the facilitative transporter GLUT1, are expressed in a renal epithelial cell line with proximal tubule characteristics. A number of studies have demonstrated that SGLT1 expression is coupled to the cellular differentiation state and is also negatively regulated by its substrate glucose. In the present study, we demonstrate that SGLT3 mRNA expression is relatively unaffected by conditions promoting dedifferentiation (reseeding to a subconfluent density, activation of protein kinase C) or differentiation (confluent cell density, activation of protein kinase A) nor was expression sensitive to hyperglycemic glucose levels in the medium. We further demonstrate that protein kinase A and protein kinase C exert opposing effects on GLUT1 and SGLT1 mRNA levels in polarized cell monolayers, indicating that GLUT1 mRNA is also highly regulated in polarized epithelial cells by agents affecting cell differentiation. The relatively constitutive expression of SGLT3 mRNA suggests a novel role for this low-affinity Na(+)/glucose cotransporter, to provide concentrative glucose uptake under hyperglycemic conditions where expression of high-affinity glucose cotransporter SGLT1 mRNA is significantly downregulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号