首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation and restoration interventions can be mutually reinforcing and are converging through an increased focus on social dimensions. This paper examines how to more effectively integrate the complementary goals of conservation and restoration of tropical forests. Forest conservation and restoration interventions are integral components of a broad approach to forest ecosystem and landscape management that aims to maintain and restore key ecological processes and enhance human well‐being, while minimizing biodiversity loss. The forest transition model provides a useful framework for understanding the relative importance of forest conservation and restoration interventions in different regions. Harmonizing conservation and restoration presents serious challenges for forest policy in tropical countries, particularly regarding the use and management of secondary forests, fallow vegetation, and forests degraded by logging and fire. Research to implement restoration more effectively in tropical regions can be stimulated by transforming questions that initially focused on conservation issues. Examination of papers published in Biotropica from 2000–2018 shows that most studies relevant to tropical forest conservation do not address forest restoration issues. Forest restoration studies, on the other hand, show a consistent association with conservation issues. There is much scope for further integration of conservation and restoration in research, practice, and policy. Securing a sustainable future for tropical forests requires developing and applying integrated approaches to landscape management that effectively combine knowledge and tools from multiple disciplines with practical experience and engagement of local stakeholders. Abstract in Portuguese is available with online material.  相似文献   

2.
Xishuangbanna, situated in the northern margin of the tropical zone in Southeast Asia, maintains large areas of tropical rain forest and contains rich biodiversity. However, tropical rain forests are being rapidly destroyed in this region. This paper analyzed spatial and temporal changes of forest cover and the patterns of forests fragmentation in Xishuangbanna by comparing classified satellite images from 1976, 1988 and 2003 using GIS analyses. The patterns of fragmentation and the effects of edge width were examined using selected landscape indices. The results show that forest cover declined from 69% in 1976 to less than 50% in 2003, the number of forests fragments increased from 6,096 to 8,324, and the mean patch size declined from 217 to 115 ha. It was found that fragment size distribution was strongly skewed towards small values, and fragment size and internal habitat differ strongly among forest types: less fragmented in subtropical evergreen broadleaf forest, but severe in forests that are suitable for agriculture (such as tropical seasonal rain forest and mountain rain forest). Due to fragmentation, the edge width was smaller in 2003 than that in 1976 when the total area of edge habitat exceeded core habitat in different forest types. The core area of tropical seasonal rain forest was smallest among main forest types at any edge width. Fragmentation was severe within 12.5-km buffers around roads. The current forest cover within reserves in Xishuangbanna was comparatively large and less fragmented. However, the tropical rain forest has been degraded inside reserves. For conservation purposes, the approaches to establish forest fragments networks by corridors and stepping stone fragments are proposed. The conservation efforts should be directed first toward the conservation of remaining tropical rain forests.  相似文献   

3.
A global overview of the conservation status of tropical dry forests   总被引:9,自引:0,他引:9  
Aim To analyse the conservation status of tropical dry forests at the global scale, by combining a newly developed global distribution map with spatial data describing different threats, and to identify the relative exposure of different forest areas to such threats. Location Global assessment. Methods We present a new global distribution map of tropical dry forest derived from the recently developed MODIS Vegetation Continuous Fields (VCF) product, which depicts percentage tree cover at a resolution of 500 m, combined with previously defined maps of biomes. This distribution map was overlaid with spatial data to estimate the exposure of tropical dry forests to a number of different threats: climate change, habitat fragmentation, fire, human population density and conversion to cropland. The extent of tropical dry forest currently protected was estimated by overlaying the forest map with a global data set of the distribution of protected areas. Results It is estimated that 1,048,700 km2 of tropical dry forest remains, distributed throughout the three tropical regions. More than half of the forest area (54.2%) is located within South America, the remaining area being almost equally divided between North and Central America, Africa and Eurasia, with a relatively small proportion (3.8%) occurring within Australasia and Southeast Asia. Overall, c. 97% of the remaining area of tropical dry forest is at risk from one or more of the threats considered, with highest percentages recorded for Eurasia. The relative exposure to different threats differed between regions: while climate change is relatively significant in the Americas, habitat fragmentation and fire affect a higher proportion of African forests, whereas agricultural conversion and human population density are most influential in Eurasia. Evidence suggests that c. 300,000 km2 of tropical dry forest now coincide with some form of protected area, with 71.8% of this total being located within South America. Main conclusions Virtually all of the tropical dry forests that remain are currently exposed to a variety of different threats, largely resulting from human activity. Taking their high biodiversity value into consideration, this indicates that tropical dry forests should be accorded high conservation priority. The results presented here could be used to identify which forest areas should be accorded highest priority for conservation action. In particular, the expansion of the global protected area network, particularly in Mesoamerica, should be given urgent consideration.  相似文献   

4.
Old‐growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human‐modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio‐economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land‐use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio‐temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well‐preserved biodiversity‐rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales.  相似文献   

5.
Local communities are important stakeholders in resource management and conservation efforts, particularly in the developing world. Although evidence is mixed in suggesting that these resident stakeholders are optimal forest stewards, it is highly unlikely that large tracts of tropical forests will be conserved without engaging local people who depend on them daily for their livelihoods. Stakeholders, who reside in biodiverse ecosystems like tropical forests, are the largest direct users and ultimate decision-makers of forest fate, can be important investors in conservation, harbor local ecological knowledge that complements Western science and frequently have long-term legitimate claims on lands where they reside. Research partnerships with local stakeholders can increase research relevance, enhance knowledge exchange and result in greater conservation success. Different phases of the research cycle present distinct opportunities for partnership, with flexibility in timing, approaches and strategies depending on researcher and local stakeholder needs and interests. Despite being the last step in the research process, dissemination of results can be the best starting point for researchers interested in experimenting with local stakeholder engagement. Still, tropical biologists might not choose to partner with local people because of lack of institutional rewards, insufficient training in stakeholder engagement, insecure research infrastructure in community settings, and time and funding limitations. Although not appropriate in all cases and despite significant challenges, some biological scientists and research institutions have successfully engaged local stakeholders in the research process, proving mutually beneficial for investigators and local people alike and resulting in important innovations in tropical biology and conservation.  相似文献   

6.
The limestone forest of Mt. Exianling on Hainan Island, China, was inventoried, and their floristic composition and biogeographical affinities discussed. Botanical surveys recorded 1121 vascular plant species belonging to 620 genera and 171 families; of which 81 represented significant records including 11 new species. Mt. Exianling is characterized by phanerophytes making up ca. 79% of the total flora, and those with mesophyllous leaves comprising ca. 64%. Ecological species groups were discerned from field observations: species exclusive to limestone habitats make up 2.4% of the total flora. Based on their distributions, 11 biogeographic elements at the generic level are recognized. Our work on Mt. Exianling revealed closer affinity to tropical Asian floras than to temperate elements of eastern Asian floras, with ca. 90% of the seed plant genera being tropical; this limestone forest is essentially tropical and is part of the tropical Asian flora at its northern margin. Unfortunately, Exianling has been subject to environmental threats from mining activities in the past two decades. Kadoorie Conservation China has heavily involved in the conservation of Exianling limestone forest and partially financed the above floristic studies. A nature reserve station was constructed in 2009, and now Exianling is being gazetted as a formal provincial nature reserve. Recently, activities in exploiting of the gold mining in Exianling has been stopped by the nature reserve.  相似文献   

7.
西双版纳森林植被研究   总被引:1,自引:0,他引:1       下载免费PDF全文
西双版纳是世界生物学多样性保护的关键和热点地区,倍受国际学术界的关注。笔者依据30多年来对西双版纳植被的调查,结合植物群落生态学与植物区系地理学研究,并参考世界类似热带植被的研究成果,对西双版纳植被的分类、物种组成、群落生态表现和植物区系特征等作了系统探讨,还进一步分析比较了其与世界类似热带森林植被的关系。结果显示,西双版纳的森林植被共包括32个较为典型的群系,且分属于7个主要的植被型,即热带雨林、热带季节性湿润林、热带季雨林、热带山地(低山)常绿阔叶林、热带棕榈林、暖热性针叶林和竹林。本文对西双版纳植被进行的全面记录和系统归纳,可为科学研究、生物多样性保护和自然保护区的管理提供参考。  相似文献   

8.

Background

Developing effective conservation plans for multi-functional landscapes requires an accurate knowledge of the relative conservation value of different land-uses. A growing number of tropical ecologists have evaluated conservation value using the number (or proportion) of species that are unique to primary or old-growth forests. However, estimates of the conservation value of modified land-uses may be inflated by the presence of occasional species (e.g. singletons and doubletons) that may be unable to exist as viable populations in isolation.

Methodology/Principal Findings

We use a unique 15-taxa dataset from a mixed-use forest landscape in the Brazilian Amazon to test the hypothesis that the removal of occasional species from sample data can increase estimates of the value of primary forest for biodiversity conservation.

Conclusions/Significance

Estimates of conservation value that are based on the proportion of species that are unique to tropical primary or old-growth forests are highly sensitive to decisions researchers make regarding the inclusion or exclusion of occasional species. By removing singletons from modified forest samples, and considering only those species known to occur in primary forest, we almost double estimates of the conservation value of tropical primary forests.  相似文献   

9.
Tropical dry forests in New Caledonia   总被引:1,自引:1,他引:0  
Tropical dry forest is the most endangered major vegetation type in the New Caledonia biodiversity hotspot. Vegetation surveys following a transect method used by Gentry were undertaken in two tropical dry forest sites, Ouen-Toro and Pindai, in order to compare species richness, floristic composition, and structure. Pindai contained significantly higher species richness than Ouen-Toro, although there was little difference in forest structure. Tropical dry forest sites in New Caledonia were compared to seven other biodiversity hotspots with tropical dry forest where Gentry's transect method was employed. New Caledonia and other tropical dry forests on islands contain significantly lower species richness than mainland tropical dry forests in biodiversity hotspots. However, New Caledonia contained the highest number of threatened species based on IUCN global conservation categories. Tropical dry forest in New Caledonia appears to be the world's most endangered tropical dry forest based on the extent of forest, number of reserves, and threatened species. Management of tropical dry forests on private and community lands is absolutely imperative to the long-term persistence of this ecosystem.  相似文献   

10.
Intensive deforestation is reducing dry tropical forest areas worldwide and increasing its fragmentation. Forest remnants can be the basis for the future recovery of this forest type if appropriate management practices are applied. This requires a better knowledge of their conservation status and the assessment of their perceived value by land users. In this study we compare the structure, species richness and diversity of different types of tropical dry forest remnants in Nicaragua and we assess their conservation status based on a new index: Social simplified Importance Value Index (SsIVI). This index summarizes both ecological indicators and the perception by local stakeholders of the conservation status of the tree species present. Results show that gallery and hillslope forest remnants have higher species richness and diversity than isolated vestigial patches. In all remnants, species richness and diversity is higher in the tree layer than in the regeneration layer. No differences are observed in valorisation among different types of remnants either for the tree layer or for the regeneration layer. In the hillslope forests, where several degrees of disturbance are present, the valorisation decreases with increasing degradation. Results of species composition and forest structure indicate a strong degradation of dry tropical forest remnants in Nicaragua. However, the similar social valorisation of the three types of remnants suggests that they face similar threats but also similar opportunities to be preserved. A decrease in valorisation with increasing degradation warns about the potential loss of the most degraded areas, unless forest restoration is applied.  相似文献   

11.
Quantifying forest change in the tropics is important because of the role these forests play in the conservation of biodiversity and the global carbon cycle. One of the world's largest remaining areas of tropical forest is located in Papua New Guinea. Here we show that change in its extent and condition has occurred to a greater extent than previously recorded. We assessed deforestation and forest degradation in Papua New Guinea by comparing a land-cover map from 1972 with a land-cover map created from nationwide high-resolution satellite imagery recorded since 2002. In 2002 there were 28,251,967 ha of tropical rain forest. Between 1972 and 2002, a net 15 percent of Papua New Guinea's tropical forests were cleared and 8.8 percent were degraded through logging. The drivers of forest change have been concentrated within the accessible forest estate where a net 36 percent were degraded or deforested through both forestry and nonforestry processes. Since 1972, 13 percent of upper montane forests have also been lost. We estimate that over the period 1990–2002, overall rates of change generally increased and varied between 0.8 and 1.8 percent/yr, while rates in commercially accessible forest have been far higher—having varied between 1.1 and 3.4 percent/yr. These rates are far higher than those reported by the FAO over the same period. We conclude that rapid and substantial forest change has occurred in Papua New Guinea, with the major drivers being logging in the lowland forests and subsistence agriculture throughout the country with comparatively minor contributions from forest fires, plantation establishment, and mining.  相似文献   

12.
Tropical ecosystems are globally important for bird diversity. In many tropical regions, land‐use intensification has caused conversion of natural forests into human‐modified habitats, such as secondary forests and heterogeneous agricultural landscapes. Despite previous research, the distribution of bird communities in these forest‐farmland mosaics is not well understood. To achieve a comprehensive understanding of bird diversity and community turnover in a human‐modified Kenyan landscape, we recorded bird communities at 20 sites covering the complete habitat gradient from forest (near natural forest, secondary forest) to farmland (subsistence farmland, sugarcane plantation) using point counts and distance sampling. Bird density and species richness were on average higher in farmland than in forest habitats. Within forest and farmland, bird density and species richness increased with vegetation structural diversity, i.e., were higher in near natural than in secondary forest and in subsistence farmland than in sugarcane plantations. Bird communities in forest and farmland habitats were very distinct and very few forest specialists occurred in farmland habitats. Moreover, insectivorous bird species declined in farmland habitats whereas carnivores and herbivores increased. Our study confirms that tropical farmlands can hardly accommodate forest specialist species. Contrary to most previous studies, our findings show that structurally rich tropical farmlands hold a surprisingly rich and distinct bird community that is threatened by conversion of subsistence farmland into sugarcane plantations. We conclude that conservation strategies in the tropics must go beyond rain forest protection and should integrate structurally heterogeneous agroecosystems into conservation plans that aim at maintaining the diverse bird communities of tropical forest‐farmland mosaics.  相似文献   

13.
ZHU Hua 《Plant Diversity》2007,29(4):377-387
Xishuangbanna of southern Yunnan is a region of extremely interest to biologists and also a hotspot for biodiversity conservation . It is located in a transitional zone from tropical Southeast Asia to temperate East Asia biogeographically. The present paper reviewed vegetation types of Xishuangbanna and suggested a revised classification system based on theupdated study results over the last two decades . By combining physiognomic and floristic characteristics with ecological performances and habitats , the primary forest vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes , i. e. tropical seasonal rain forest in the lowlands and tropical montane rain forest on higher elevations. The tropical seasonal rain forest in this region shows similar forest profile and physiognomic characteristics to those of equatorial lowland rain forests and is a type of world tropical rain forest. Because of conspicuous similarity on floristic composition , the tropical seasonal rain forest in Xishuangbanna is a type of tropical Asian rain forest . However , since the tropical seasonal rain forest occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in maintaining some deciduous trees in the canopy layer , fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll . It is a type of semi-evergreen rain forest at the northern edge of the tropical zone . The tropical montane rain forest occurs in wet montane habitats and is similar to the lower montane rain forests in equatorial Asia in floristic composition and physiognomy . It is a variety of lower montane rain forests at the northern tropical edges of tropical rain forests . The tropical seasonal moist forest occurs on middle and upper limestone mountains and is similar to the tropical montane evergreen broad-leaved forest of the region in physiognomy, but it differs from the latter in floristic composition. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad- leaved forest is the main vegetation type in mountain areas . It is dominated by the tree species of Fagaceae , Euphorbiaceae , Theaceae and Lauraceae in majority. It differs from the tropical montane rain forests in lack of epiphytes and having more abundant lianas and plants with compound leaves . It is considered to be a distinct vegetation type in the northern margin of mainland southeastern Asia controlling by a strong monsoon climate, based on its floristic and physiognomic characteristics.  相似文献   

14.
Tropical forest ecosystems are the world's richest and most complex habitats and globally recognised for their importance in the human survival. Birds constitute an important component of tropical forests, not only in terms of their diversity, but also in terms of their role in the ecosystem. However, despite great advances made in our knowledge and protection of tropical forest birds, our efforts remain inadequate, particularly in Africa. African forests are being cut down by a very high rate (4 million hectare disappearing per year), putting at risk so many bird species, that the first challenge for research and conservation is to help managers in identifying priorities.

The relationship emphasised by the theme of the PAOC 9 “Birds, Habitats and People” is well examined during the symposium on the “Conservation of Forest Birds in Afiica”. The papers presented cover a wide range of topics. A broad scale analysis on the congruence between forest birds and mammals (Neil et al.) compares species richness and species endemism in the Afrotropical region. Larison et al. compare avian biodiversity of montane forest birds of northern Cameroon and Bioko island and evaluate their conservation potential based on species richness and human impacts and attitudes. A similar approach is done by Waiyaki and Bennun on birds of coastal forests in southern Kenya, while Math et al. examine the distribution the east Coast Akalat Sheppardia gunningi sokokensis in one single forest of Arabuko-Sokoke. The major threat to tropical forests today is the selective logging. The effect of this issue is presented by Dranzoa in a case study from Uganda's Kibale National Park.

Results of these papers show the necessity to take into account the particular requirements of all species in the management of the forest, the socio-cultural considerations in implementation of conservation measures, the necessity of policy changes in some cases and the necessity of further research.  相似文献   

15.
论滇南西双版纳的森林植被分类   总被引:3,自引:0,他引:3  
朱华 《云南植物研究》2007,29(4):377-387
本文基于多年研究成果的总结,对西双版纳森林植被的分类、主要植被类型及其特征进行了系统归纳,并讨论了它们与世界类似热带森林植被的关系。以群落的生态外貌与结构、种类组成和生境特征相结合作为植被分类的原则和依据,可以将西双版纳的热带森林植被分类为热带雨林、热带季节性湿润林、热带季雨林和热带山地常绿阔叶林四个主要的植被型,包括有至少二十个群系。热带雨林包括热带季节雨林和热带山地(低山)雨林二个植被亚型。热带季节雨林具有与赤道低地热带雨林几乎一样的群落结构和生态外貌特征,是亚洲热带雨林的一个类型,但由于发生在季风热带北缘纬度和海拔的极限条件下,受到季节性干旱和热量不足的影响,在其林冠层中有一定比例的落叶树种存在,大高位芽植物和附生植物较逊色而藤本植物和在叶级谱上的小叶型植物更丰富,这些特征又有别于赤道低地的热带雨林。热带山地雨林是热带雨林的山地亚型,是该地区热带山地较湿润生境的一种森林类型,它在植物区系组成和生态外貌特征上类似于热带亚洲的低山雨林,隶属于广义热带雨林植被型下的低山雨林亚型。热带季节性湿润林分布在石灰岩山坡中、上部,在群落外貌上类似热带山地常绿阔叶林但在植物区系组成上与后者不同,它是石灰岩山地垂直带上的一种植被类型。热带季雨林是分布在该地区开阔河谷盆地及河岸受季风影响强烈的生境的一种热带落叶森林,是介于热带雨林与萨王纳之间的植被类型。热带山地常绿阔叶林(季风常绿阔叶林)是西双版纳的主要山地植被类型,它分布在热带季节雨林带之上偏干的山地生境。它在植物区系组成上不同于该地区的热带季节雨林,在生态外貌特征上亦不同于热带山地雨林,是发育在受地区性季风气候强烈影响的热带山地的一种森林植被类型。  相似文献   

16.
In pursuance of economic growth and development, logging has exhausted the natural timber resource in the tropical rainforest of Sabah, Malaysia. Realizing the forest depletion, the Sabah Forestry Department, with technical support from the German Agency for Technical Cooperation, begun developing a management system with the intent of managing all commercial forest reserves in a way that mimics natural processes for sustainable production of low volume, high quality, and high priced timber products in 1989. As dictated by a forest management plan based on forest zoning, about 51,000 ha of the entire area is set aside for log production and 4,000 ha for conservation in Deramakot Forest Reserve, Sabah, Malaysia. This Forest Management Plan has served as the blueprint for operational work and biodiversity conservation in Deramakot to the present. A strict protection area is set aside for biodiversity conservation within the reserve. A reduced-impact logging system is being employed for harvesting with minimal impacts on the physical environment. Deramakot Forest Reserve was certified as “well managed” by an international certification body, the Forest Stewardship Council, in 1997 and is the first natural forest reserve in Southeast Asia managed in accordance with sustainable forestry principles. In addition to providing a "green premium," certification provides easier market access, evidence of legality, multi-stakeholder participation, conservation of biodiversity and best forest management practices, particularly reduced-impact logging techniques. Deramakot Forest Reserve is the flagship of the Sabah Forestry Department and serves as a symbol of what can be achieved with political support and institutional commitment.  相似文献   

17.
Increasing evidence is available for a positive effect of biodiversity on ecosystem productivity and standing biomass, also in highly diverse systems as tropical forests. Biodiversity conservation could therefore be a critical aspect of climate mitigation policies. There is, however, limited understanding of the role of individual species for this relationship, which could aid in focusing conservation efforts and forest management planning. This study characterizes the functional specialization and redundancy for 95% of all tree species (basal area weighted percentage) in a diverse tropical forest in the central Congo Basin and relates this to species' abundance, contribution to aboveground carbon, and maximum size. Functional characterization is based on a set of traits related to resource acquisition (wood density, specific leaf area, leaf carbon, nitrogen and phosphorus content, and leaf stable carbon isotope composition). We show that within both mixed and monodominant tropical forest ecosystems, the highest functional specialization and lowest functional redundancy are solely found in rare tree species and significantly more in rare species holding large‐sized individuals. Rare species cover the entire range of low and high functional redundancy, contributing both unique and redundant functions. Loss of species supporting functional redundancy could be buffered by other species in the community, including more abundant species. This is not the case for species supporting high functional specialization and low functional redundancy, which would need specific conservation attention. In terms of tropical forest management planning, we argue that specific conservation of large‐sized trees is imperative for long‐term maintenance of ecosystem functioning.  相似文献   

18.
As the tropical deforestation crisis continues, innovative schemes are being developed to reduce this loss, such as the sale of forest carbon credit. Nevertheless, to address this ongoing and pervasive loss, governments, protected area managers and donors need to know where to invest their limited conservation resources for greatest success. At the moment this prioritisation is rarely done objectively, so there is a need for new methods that predict the efficacy of different approaches. In this study, we focus on forest loss in and around one of Indonesia’s largest protected areas, Kerinci Seblat National Park (KSNP), and evaluate the effectiveness of several forest protection scenarios. First, forest loss patterns from 1985 to 2002 were mapped for the southern end of the KS region and the correlates of deforestation were determined using a logistic regression analysis. This highlighted the critical threat posed to the forest by its proximity to the forest edge and to settlements, as well as its elevation and slope. This regression model was then used to map the predicted risk of remaining forest being cleared and was combined with field data to model the results of three law enforcement scenarios up to the year 2020. This found that a strategy that concentrated patrol effort at the four main access points was found to avoid the most deforestation. These results show that modelling the impact of different protection strategies can provide important insights and could be used more widely in deforestation mitigation and designing conservation landscapes.  相似文献   

19.
Deforestation and selective logging in the tropics may have serious consequences on genetic processes in tropical tree populations, affecting long-term survival of a given species as well as tropical forest communities. Because understanding the effects of human-induced changes on genetic processes is of utmost importance in formulating sound conservation and management plans for tropical forest communities, we developed microsatellite or simple sequence repeat (SSR) markers for the tropical tree Carapa guianensis (Meliaceae) and assessed the polymorphism of SSRs in adult and sapling populations in a large contiguous forest and in selectively logged and fragmented forests. The number of alleles in polymorphic loci ranged between 4 and 28. No inbreeding was detected in saplings or adult cohorts, but the allelic richness was lower in the sapling cohort of the isolated fragment. Genetic distances, Nei's D and (delta&mgr;)2, and RST values among saplings were greater than among adult cohorts, suggesting restriction of gene flow due to deforestation and habitat fragmentation. These SSR loci may be used to address many related questions regarding the population and conservation genetics of tropical trees.  相似文献   

20.
森林遗传资源保护研究进展   总被引:1,自引:0,他引:1  
森林遗传资源的保护事关现代及后代的利益,已引起全球的极大关注,自70年代以来,就地保护与迁地保护作为主要的战略在森林遗传资源保护实践中使用。一般来说森林遗传资源的就地保护可以通过建立自然保护区来实现。迁地保护主要包括种子库、田间基因库、种子园及细胞或组织培养等技术。就地保护和迁地保护应当相互补充,两者结合使用是保存森林遗传多样性的有效方法。对森林遗传资源保护战略的选择以及因贸易而濒危的热带材用树及其保护问题也作了简要评述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号