首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,25-Dihydroxycholecalciferol, when present at and above 10 nM in an organ-culture system of embryonic chick jejunum, approximately doubled the rate of Na(+)-gradient-driven D-glucose uptake by brush-border membrane vesicles, but had no effect on Na(+)-independent D-glucose transfer. The sterol also had no effect on Na+ influx along an outside/inside Na+ gradient ([Na+]o = 100 mM; [Na+]i = 0 mM). This renders it unlikely that in embryonic intestine, calcitriol raises Na(+)-dependent D-glucose transport through changes in the electrochemical Na+ gradient. D-[U-14C]Glucose tracer exchange, measured under voltage-clamp condition at Na+/D-glucose equilibrium, revealed that addition of calcitriol to the culture medium approximately doubled the activity of the Na+/D-glucose transporter in the brush-border membrane. This was also reflected by an corresponding increase in the maximal velocity of the transfer process. Increased [3H]phlorizin binding after calcitriol treatment suggests that the steroid hormone activates Na+/D-glucose transport through increasing the number of carrier molecules in the brush-border membrane. 10 nM triiodothyronine, which by itself has no effect on Na(+)-dependent D-glucose transport, potentiated the effect of 1,25-dihydroxycholecalciferol such that in the presence of both hormones, Na+/D-glucose-carrier activity was increased fourfold above control levels.  相似文献   

2.
3.
4.
Small unilamellar vesicles were prepared from cardiolipin and produced the hexagonal II phase when dialyzed against CaCl2 or MgCl2. Upon removal of the cation by dialysis against EDTA large unilamellar vesicles were formed. The events of the transition from the lamellar to hexagonal phase and back to the lamellar phase are described.  相似文献   

5.
We compared the properties of three mammalianNa+/Ca2+exchanger isoforms, NCX1, NCX2, and NCX3, by analyzing the effects of Ni2+ and other cations as well asthe recently identified inhibitor isothiourea derivatives onintracellular Na+-dependent45Ca2+uptake into CCL-39 (Dede) fibroblasts stably expressingeach isoform. All these NCX isoforms had similar affinities for the extracellular transport substratesCa2+ andNa+.Ni2+ inhibited45Ca2+uptake by competing with Ca2+ forthe external transport site, with 10-fold less affinity in NCX3 than inNCX1 or NCX2. Ni2+ andCo2+ were most efficient in suchdiscrimination of NCX isoforms, although their inhibitory potencieswere less than those of La3+ andCd2+. The monovalent cationLi+ stimulated45Ca2+uptake rate by all NCX isoforms similarly with low affinity, althoughthe extent of stimulation was somewhat smaller in NCX1. On the otherhand, the isothiourea derivative KB-R7943 was threefold more inhibitoryto NCX3 than to NCX1 or NCX2. Thus distinct differences in the kineticand pharmacological properties were detected between NCX3 and the othertwo isoforms.

  相似文献   

6.
Summary The small intestinal brush border membrane is endowed with a number of transport systems. Monoclonal antibodies were produced against integral membrane proteins and tested for their ability to bind to such membranes. For this purpose papain-digested, deoxycholate-extracted BBMVs from rabbit small intestine were used to immunize mice. Of the 765 hybridoma supernatants tested, 119 gave a significantly higher extent of binding to the crude antigen preparation as compared with the background. The monoclonal antibodies were also tested for their ability to influence the sodium-dependent uptake of solutes into intact BBMVs. Two monoclonal antibodies clearly showed stimulation of secondary actived-glucose transport, whereas sodium-dependent uptake ofl-alanine andl-proline was not affected. Hydrophobically labeled, i.e. intrinsic, membrane proteins of 175, 78 and 65 kilodaltons could be immunoprecipitated by both monoclonal antibodies, the 78 kDa band corresponding in all likelihood to the Na+/glucose cotransporter.  相似文献   

7.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

8.
We have examined the actions of Zn2+ ions on Shaker K channels. We found that low (100 microM) concentrations of Zn2+ produced a substantial (approximately three-fold) slowing of the kinetics of macroscopic activation and inactivation. Channel deactivation was much less affected. These results were obtained in the presence of 5 mM Mg2+ and 4 mM Ca2+ in the external solution and so are unlikely to be due to modification of membrane surface charges. Furthermore, the action of 100 microM Zn2+ on activation was equivalent to a 70-mV reduction of a negative surface potential whereas the effects on deactivation would require a 15-mV increase in surface potential. External H+ ions reduced the Zn-induced slowing of macroscopic activation with an apparent pK of 7.3. Treatment of Shaker K channels with the amino group reagent, trinitrobenzene sulfonic acid (TNBS), substantially reduced the effects of Zn2+. All these results are qualitatively similar to the actions of Zn2+ on squid K channels, indicating that the binding site may be a common motif in potassium channels. Studies of single Shaker channel properties showed that Zn2+ ions had little or no effect on the open channel current level or on the open channel lifetime. Rather, Zn2+ substantially delayed the time to first channel opening. Thus, K channels appear to contain a site to which divalent cations bind and in so doing act to slow one or more of the rate constants controlling transitions among closed conformational states of the channel.  相似文献   

9.
Small unilamellar vesicles were prepared from cardiolipin and produced the hexagonal II phase when dialyzed against CaCl2 or MgCl2. Upon removal of the cation by dialysis against EDTA large unilamellar vesicles were formed. The events of the transition from the lamellar to hexagonal phase and back to the lamellar phase are described.  相似文献   

10.
Previously we showed that atrial natriuretic factor (ANF) decreases cardiac cell volume by inhibiting ion uptake by Na+/K+/2Cl- cotransport. Digital video microscopy was used to study the role of guanosine 3',5'-monophosphate (cGMP) in this process in rabbit ventricular myocytes. Each cell served as its own control, and relative cell volumes (volume(test)/volume(control)) were determined. Exposure to 10 microM 8-bromo-cGMP (8-Br-cGMP) reversibly decreased cell volume to 0.892 +/- 0.007; the ED50 was 0.77 +/- 0.33 microM. Activating guanylate cyclase with 100 microM sodium nitroprusside also decreased cell volume to 0.889 +/- 0.009. In contrast, 8-bromo-adenosine 3',5'-monophosphate (8-Br-AMP; 0.01-100 microM) neither altered cell volume directly nor modified the response to 8-Br-cGMP. The idea that cGMP decreases cell volume by inhibiting Na+/K+/2Cl- cotransport was tested by blocking the cotransporter with 10 microM bumetanide (BUM) and removing the transported ions. After BUM treatment, 10 microM 8-Br-cGMP failed to decrease cell volume. Replacement of Na+ with N-methyl-D-glucamine or Cl- with methanesulfonate also prevented 8-Br-cGMP from shrinking cells. The data suggest that 8-Br-cGMP, like ANF, decreases ventricular cell volume by inhibiting Na+/K+/2Cl-cotransport. Evidence that ANF modulates cell volume via cGMP was also obtained. Pretreatment with 10 microM 8-Br-cGMP prevented the effect of 1 microM ANF on cell volume, and ANF suppressed 8-Br-cGMP-induced cell shrinkage. Inhibiting guanylate cyclase with the quinolinedione LY83583 (10 microM) diminished ANF-induced cell shrinkage, and inhibiting cGMP-specific phosphodiesterase with M&B22948 (Zaprinast; 100 microM) amplified the volume decrease caused by a low dose of ANF (0.01 microM) approximately fivefold. In contrast, neither 100 microM 8-Br-cAMP nor 50 microM forskolin affected the response to ANF. The effects of ANF, LY83583, and M&B29948 on cGMP levels in isolated ventricular myocytes were confirmed by 125I-cGMP radioimmunoassay. These data argue that ANF shrinks cardiac cells by increasing intracellular cGMP, thereby inhibiting Na+/K+/2Cl- cotransport. Basal cGMP levels also appear to modulate cell volume.  相似文献   

11.
The exit of HCO3- across the basolateral membrane of the proximal tubule cell occurs via the electrogenic cotransport of 3 eq of base per Na+. We have used basolateral membrane vesicles isolated from rabbit renal cortex to identify the ionic species transported via this pathway. Media of varying pH and pCO2 were employed to evaluate the independent effects of HCO3- and CO3(2-) on 22Na transport. Na+ uptake was stimulated when [CO3(2-)] was increased at constant [HCO3-], indicating the existence of a transport site for CO3(2-). In the presence of HCO3-, Na+ influx was stimulated more than 3-fold by an inward SO3(2-) gradient. SO3(2-)-stimulated Na+ influx was stilbene-sensitive, confirming that it occurs via the Na+-HCO3- cotransport system. Na+-SO3(2-) cotransport was demonstrated and found to have a 1:1 stoichiometry. Increasing [CO3(2-)] at constant [HCO3-] reduced the stimulation of Na+ influx by SO3(2-), suggesting competition between SO3(2-) and CO3(2-) at a common divalent anion site. Additional divalent anions that were tested, such as SO4(2-), oxalate2-, and HPO4(2-), did not interact at this site. SO3(2-) stimulation of Na+ influx was absolutely HCO3-(-)dependent and was increased as a function of [HCO3-], indicating the presence of a separate HCO3- site. Lastly, we tested whether Na+ interacts via ion pair formation with CO3(2-) or binds to a distinct site. Na+, which has lower affinity than Li+ for ion pair formation with CO3(2-), was found to have greater than 5-fold higher affinity than Li+ for the Na+-HCO3- cotransport system. Moreover, when its inhibition was studied as a function of [Na+], harmaline was found to be a competitive inhibitor of Na+ influx, indicating the existence of a distinct cation site. Our data are compatible with a model in which base transport across the basolateral membrane of the proximal tubule cell takes place via 1:1:1 cotransport of CO3(2-), HCO3-, and Na+ on distinct sites.  相似文献   

12.
Adenosine is actively transported with Na+ in Vibrio parahaemolyticus (Sakai, Y., Tsuda, M., Tsuchiya, T. (1987) Biochim, Biophys. Acta 893, 43-48). The proton conductor carbonylcyanide m-chlorophenylhydrazone, CCCP, strongly inhibited active transport of adenosine at pH 8.5 as well as at pH 7.0. This seemed peculiar because the driving force, an electrochemical potential of Na+, is established by the Na(+)-extruding respiratory chain at pH 8.5 in this organism, although it is established by the function of the Na+/H+ antiporter at pH 7.0. This suggested that H+ might be involved in the adenosine transport. We detected H+ uptake induced by adenosine influx in V. parahaemolyticus cells in the presence of Na+, but not in its absence, suggesting the occurrence of Na+/H+/adenosine cotransport. We isolated formycin A-resistant mutants which showed defective adenosine transport. The mutation resulted in simultaneous losses of Na+ uptake and H+ uptake induced by adenosine. In revertants from these mutants the Na+ uptake and H+ uptake were restored simultaneously. The frequencies of reversion were in the order of 10(-7), indicating that the mutations were single mutations; namely that Na+/adenosine cotransport and H+/adenosine cotransport took place via the same carrier. Thus, we conclude that adenosine is transported by the novel mechanism of Na+/H+/adenosine cotransport in V. parahaemolyticus.  相似文献   

13.
We have investigated the temperature dependence of the fusion of phospholipid vesicles composed of pure bovine brain phosphatidylserine (PS) induced by Ca2+ or Mg2+. Aggregation of the vesicles was monitored by 90 degrees light-scattering measurements, fusion by the terbium/dipicolinic acid assay for mixing of internal aqueous volumes, and release of vesicle contents by carboxyfluorescein fluorescence. Membrane fluidity was determined by diphenylhexatriene fluorescence polarization measurements. Small unilamellar vesicles (SUV, diameter 250 A) or large unilamellar vesicles (LUV, diameter 1000 A) were used, and the measurements were done in 0.1 M NaCl at pH 7.4. The following results were obtained: (1) At temperatures (0-5 degrees C) below the phase transition temperature (Tc) of the lipid, LUV (PS) show very little fusion in the presence of Ca2+, although vesicle aggregation is rapid and extensive. With increasing temperature, the initial rate of fusion increases dramatically. Leakage of contents at the higher temperatures remains limited initially, but subsequently complete release occurs as a result of collapse of the internal aqueous space of the fusion products. (2) SUV (PS) are still in the fluid state down to 0 degree C, due to the effect of bilayer curvature, and fuse rapidly in the entire temperature range from 0 to 35 degrees C in the presence of Ca2+. The initial rate of leakage is low relative to the rate of fusion. At higher temperatures (15 degrees C and above), subsequent collapse of the vesicles' internal space causes complete release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

15.
The permeability of several cell lines, including HeLa, L929, 3T6 and 3T3, to various compounds is affected by the concentration of divalent cations in the culture medium. In the absence of Mg2+ ions but with 4-8 mM CaCl2 in the medium, HeLa and L929 cells become permeabilized, as measured by the entry of the aminoglycoside antibiotic hygromycin B. However, 3T3 and 3T6 cells become much more permeable when calcium and magnesium are both absent from the medium. Addition of Mg2+ above 2 mM abolishes the permeabilization induced by Ca2+. Basic pH favors permeabilization, whereas acidic pH inhibits the entry of hygromycin B. Increased entry of macromolecules, such as the toxin alpha-sarcin, horseradish peroxidase (HRP) and luciferase, is also observed under permeabilization conditions, suggesting that this method could be of general use, since it is not harmful to cells and is fully reversible. Exit of 86Rb+ ions and [3H]uridine-labelled nucleotides was also assayed. We did not observe increased release of these compounds from preloaded cells under various calcium concentrations. Finally, the effects of several inhibitors of endocytosis and other membrane functions on the permeabilization inhibitors of endocytosis and other membrane functions on the permeabilization process were also analysed. The entry of alpha-sarcin was not affected by nifedipine, dibucaine or mepacrine, but was partially inhibited by NH4Cl, amantadine and chloroquine.  相似文献   

16.
Mg2+-induced subconformational changes of the E1 conformation of partly purified pig kidney Na+/K+-ATPase were studied by fluorescence techniques. In the enzyme with carboxyl groups modified by carbodiimide in the presence of an exogenous nucleophile the efficiency to pass through conformational substates was substantially lower than in the unmodified enzyme. Magnesium could form bridges between carboxyl groups near the membrane/water interface and negatively charged phospholipid polar heads.  相似文献   

17.
Endocytic uptake of [3H]sucrose and lucifer yellow, markers for fluid-phase endocytosis, was studied in cultures of the renal epithelial cell lines LLC-PK1 and OK. Endocytosis in LLC-PK1 cells was inhibited when the cells were grown in the presence of gentamicin (1 mg/ml) for 4 days or when the cells were treated with concanavalin A (1 mg/ml) for 5 h. These changes occurred without perturbation of intracellular Na+ and K+ content, indicating that the cells maintained normal ion gradients. The inhibition of endocytosis was accompanied by marked increases in the apparent Vmax for Na+-dependent cell uptake of solutes such as Pi and L-alanine. The apparent Km was unchanged. In contrast, treatment of OK cells with concanavalin A produced marked stimulation of endocytosis and inhibition of the Na+-dependent uptake of Pi and L-glutamate. These changes occurred in the absence of changes in intracellular Na+ and K+ content. Neither gentamicin nor concanavalin A had a direct effect on Na+/solute cotransport in these cell lines. The changes in Na+/Pi cotransport induced by concanavalin A in both LLC-PK1 and OK cells were blocked by keeping the cells at 4 degrees C during exposure to the lectin, suggesting that endocytosis may be part of the mechanism which mediates the changes in solute uptake. The reciprocal relationship between the changes in endocytosis and the changes in Na+/solute cotransport is consistent with the possibility that the number of Na+/solute cotransporters present in the plasma membrane may be altered by an increase or decrease in the rate of membrane internalization by endocytosis. The Vmax changes in Na+/solute cotransport provide indirect support for this conclusion.  相似文献   

18.
The broadening of spin-label absorption lines resulting from spin-exchange reactions that occur during collision with paramagnetic Ni2+ is diminished when Ni2+ binds to phospholipid vesicles. Subsequent addition of non-paramagnetic ions that compete for binding sites releases Ni2+ into solution and restores the line-broadening. The concentrations of various ions required to achieve this effect was used to order the ions with respect to their binding to vesicles containing phosphatidylethanolamine and phosphatidylglycerol. The relative strengths of binding for those ions studied were: Ca2+ > Mg2+ > Zn2+ > Sr2+ > Ba2+. The spin-broadening assay was also used to study the effects of two proteins on the availability of Ni2+-binding sites on the vesicles. Ribonuclease, which is thought to associate electrostatically as an extrinsic protein on the surface of vesicles, completely blocked the Ni2+-binding sites at comparatively low protein concentrations. Quantitative considerations of these data suggest the possibility that Ni2+ may bind preferenetially to phosphatidylglycerol, and that these binding sites are aggregated in the ribonuclease-containing vesicles. In contract to ribonuclease, cytochrome c does not block Ni2+-bindings sites on the phospholipid vesicles, but rather contains sites of its own that bind Ni2+, both when the protein is in solution and when it is associated with the vesicles. These results are consistent with other studies which suggest that cytochrome c becomes partially embedded in membrane bilayers and associates with phospholipid molecules through hydrophobic interactions.  相似文献   

19.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

20.
In patch-clamp experiments on rat liver mitoplasts, the 1.3 nanosiemens (in 150 mM KCl) mitochondrial megachannel was activated by Ca2+ and competitively inhibited by Mg2+, Mn2+, Ba2+, and Sr2+. Cyclosporin A, which inhibits the megachannel, also showed a competitive behavior versus Ca2+. The pore is regulated by pH in the physiological range; lower pH values cause its closure in a Ca(2+)-reversible manner. The modulating sites involved in these effects are located on the matrix side of the membrane. As illustrated in the companion paper (Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabó, I., and Zoratti, M. (1992) J. Biol. Chem. 267, 2934-2939), the calcium-induced permeability transition of mitochondria is affected by these various agents in a similar manner. The results support the identification of the megachannel with the pore believed to be involved in the permeabilization process. The kinetic characteristics of the single channel events support the idea that the megachannel is composed of cooperating subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号