首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total number of bacteria, cellulolytic bacteria, and H2-utilizing microbial populations (methanogenic archaea, acetogenic and sulfate-reducing bacteria) were enumerated in fresh rumen samples from sheep, cattle, buffaloes, deer, llamas, and caecal samples from horses. Methanogens and sulfate reducers were found in all samples, whereas acetogens were not detected in some samples of each animal. Archaea methanogens were the largest H2-utilizing populations in all animals, and a correlation was observed between the numbers of methanogens and those of cellulolytic microorganisms. Higher counts of acetogens were found in horses and llamas (1 × 104 and 4 × 104 cells ml−1 respectively).  相似文献   

2.
The microbial population of geothermally heated sediments in a shallow bay of Vulcano Island (Italy) was characterized with respect to metabolic activities and the putatively catalyzing hyperthermophiles. Site-specific anoxic culturing media, most of which were amended with combinations of electron donors (glucose or carboxylic acids) and acceptors (sulfate), were used for selective enrichment of metabolically defined subpopulations. The mostly archaeal chemoautotrophs produced formate at rates of 3.25 and 0.46 fmol cell−1 day−1 with and without sulfate, respectively. The glucose fermenting heterotrophs produced acetate (18 fmol cell−1 day−1) and lactate (2.6 fmol cell−1 day−1) and were identified as predominantly Thermus sp. and coccoid archaea. These archaeal cells also metabolized lactate (5.6 fmol cell−1 day−1), but neither formate nor acetate. The heterotrophic culture enriched on formate/acetate/propionate/sulfate utilized mainly formate (27 fmol cell−1 day−1) and lactate (89–195 fmol cell−1 day−1), and consumed sulfate (38–68 fmol cell−1 day−1). These formate or lactate consuming sulfate reducers were dominated by Archaeoglobales (7% in situ) and unidentified Archaea. The in situ benthic community comprised 15% Crenarchaeota, a significant group only in the autotrophic cultures, and 3% Thermus sp., the putatively predominant group involved in fermentative metabolism. The role of Thermoccales (4% in situ) remained undisclosed in our experiments. This first comprehensive data set established plausible links between several groups of hyperthermophiles in shallow marine hydrothermal systems, their metabolic function within the benthic microbial community, and biogeochemical turnover rates.  相似文献   

3.
The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ34S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.  相似文献   

4.
The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S0) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration.  相似文献   

5.
The microbial population structure and function of natural anaerobic communities maintained in laboratory fixed-bed biofilm reactors were tracked before and after a major perturbation, which involved the addition of sulfate to the influent of a reactor that had previously been fed only glucose (methanogenic), while sulfate was withheld from a reactor that had been fed both glucose and sulfate (sulfidogenic). The population structure, determined by using phylogenetically based oligonucleotide probes for methanogens and sulfate-reducing bacteria, was linked to the functional performance of the biofilm reactors. Before the perturbation, the methanogenic reactor contained up to 25% methanogens as well as 15% sulfate-reducing bacteria, even though sulfate was not present in the influent of this reactor. Methanobacteriales and Desulfovibrio spp. were the most abundant methanogens and sulfate-reducing bacteria, respectively. The presence of sulfate-reducing bacteria (primarily Desulfovibrio spp. and Desulfobacterium spp.) in the absence of sulfate may be explained by their ability to function as proton-reducing acetogens and/or fermenters. Sulfate reduction began immediately following the addition of sulfate consistent with the presence of significant levels of sulfate-reducing bacteria in the methanogenic reactor, and levels of sulfate-reducing bacteria increased to a new steady-state level of 30 to 40%; coincidentally, effluent acetate concentrations decreased. Notably, some sulfate-reducing bacteria (Desulfococcus/Desulfosarcina/Desulfobotulus group) were more competitive without sulfate. Methane production decreased immediately following the addition of sulfate; this was later followed by a decrease in the relative concentration of methanogens, which reached a new steady-state level of approximately 8%. The changeover to sulfate-free medium in the sulfidogenic reactor did not cause a rapid shift to methanogenesis. Methane production and a substantial increase in the levels of methanogens were observed only after approximately 50 days following the perturbation.  相似文献   

6.
Waste streams from industrial processes such as metal smelting or mining contain high concentrations of sulfate and metals with low pH. Dissimilatory sulfate reduction carried out by sulfate-reducing bacteria (SRB) at low pH can combine sulfate reduction with metal-sulfide precipitation and thus open possibilities for selective metal recovery. This study investigates the microbial diversity and population changes of a single-stage sulfidogenic gas-lift bioreactor treating synthetic zinc-rich waste water at pH 5.5 by denaturing gradient gel electrophoresis of 16S rRNA gene fragments and quantitative polymerase chain reaction. The results indicate the presence of a diverse range of phylogenetic groups with the predominant microbial populations belonging to the Desulfovibrionaceae from δ-Proteobacteria. Desulfovibrio desulfuricans-like populations were the most abundant among the SRB during the three stable phases of varying sulfide and zinc concentrations and increased from 13% to 54% of the total bacterial populations over time. The second largest group was Desulfovibrio marrakechensis-like SRB that increased from 1% to about 10% with decreasing sulfide concentrations. Desulfovibrio aminophilus-like populations were the only SRB to decrease in numbers with decreasing sulfide concentrations. However, their population was <1% of the total bacterial population in the reactor at all analyzed time points. The number of dissimilatory sulfate reductase (DsrA) gene copies per number of SRB cells decreased from 3.5 to 2 DsrA copies when the sulfide concentration was reduced, suggesting that the cells' sulfate-reducing capacity was also lowered. This study has identified the species present in a single-stage sulfidogenic bioreactor treating zinc-rich wastewater at low pH and provides insights into the microbial ecology of this biotechnological process.  相似文献   

7.
In this study, two laboratory-scale anaerobic batch reactors started up with different inoculum sludges and fed with the same synthetic wastewater were monitored in terms of performance and microbial community shift by denaturant gradient gel electrophoresis fingerprinting and subsequent cloning, sequencing analysis in order to reveal importance of initial quality of inoculum sludge for operation of anaerobic reactors. For this purpose, two different seed sludge were evaluated. In Reactor1 seeded with a sludge having less diverse microbial community (19 operational taxonomic unit (OTU’s) for Bacterial and 8 OTU’s for Archaeal community, respectively) and a methanogenic activity of 150 ml CH4 g TVS−1 day−1, a chemical oxygen demand (COD) removal efficiency of 78.8 ± 4.17% was obtained at a substrate to microorganism (S/X) ratio of 0.38. On the other hand, Reactor2, seeded with a sludge having a much more diverse microbial community (24 OTU’s for Bacterial and 9 OTU’s for Archaeal communities, respectively) and a methanogenic activity, 450 ml CH4 g TVS−1 day−1, operated in the same conditions showed a better start-up performance; a COD removal efficiency of over 98% at a S/X ratio of 0.53. Sequence analysis of Seed2 revealed the presence of diverse fermentative and syntrophic bacteria, whereas excised bands of Seed1 related to fermentative and sulfate/metal-reducing bacteria. This study revealed that a higher degree of bacterial diversity, especially the presence of syntrophic bacteria besides the abundance of key species such as methanogenic Archaea may play an important role in the performance of anaerobic reactors during the start-up period.  相似文献   

8.
This study investigated the distribution of bacteria in groundwater from 16 different levels in five boreholes in granite bedrock down to a maximum of 860 m. Enrichment cultures were used to assay the groups of bacteria present. Autoradiographic studies with14C- or3H-labeled formate, methanol, acetate, lactate, glucose, sodium bicarbonate, leucine, glutamine, thymidine, orN-acetyl-glucosamine were used to obtain information about bacteria active in substrate uptake. The biofilm formation potential was studied in one borehole. The chemical environment in the groundwater was anaerobic with an Eh between −112 and −383 mV, a pH usually around 8, and a temperature range of 10.2 to 20.5°C, depending on the depth. The organic content ranged between <0.5 and 9.5 mg total organic carbon liter−1. Carbon dioxide, hydrogen, hydrogen sulfide, and methane were present in the water. The nitrate, nitrite, and phosphate concentrations were close to, or below, the detection limits, while there were detectable amounts of NH 4 + in the range of 4 to 330 μg liter−1. The average total number of bacteria was 2.6×105 bacteria ml−1, as determined with an acridine organge direct-count (AODC) technique. The average number of bacteria that grew on a medium with 1.5 g liter−1 of organic substrate was 7.7×103 colony-forming units (CFU) ml−1. The majority of these were facultatively anaerobic, gram-negative, nonfermenting heterotrophs. Enrichment cultures indicated the presence of anaerobic bacteria capable of growth on C-1 compounds and hydrogen, presumably methanogenic bacteria. Most probable number assays with sulfate and lactate revealed up to 5.6×104 viable sulfate-reducing bacteria per ml. A biofilm development experiment indicated an active attached microbial population. Active substrate uptake could not be registered with the bulk water populations, except for an uptake of leucine not associated with growth. The bulk water microbial cells in deep groundwater may be inactive cells detached from active biofilms on the rock surface.  相似文献   

9.
A methanogenic and sulfate-reducing consortium, which was enriched on medium containing tetrachloroethylene (PCE), had the ability to dechlorinate high concentrations of PCE. Dehalogenation was due to the direct activity of methanogens. However, interactions between methanogenic and sulfate-reducing bacteria involved modification of the dechlorination process according to culture conditions. In the absence of sulfate, the relative percentage of electrons used in PCE dehalogenation increased after an addition of lactate in batch conditions. The sulfate reducers would produce further reductant from lactate catabolism. This reductant might be used by methanogenic bacteria in PCE dechlorination. A mutualistic interaction was observed in the absence of sulfate. However in the presence of sulfate, methanogenesis and dechlorination decreased because of interspecific competition, probably between the H(2)-oxydizing methanogenic and sulfate-reducing bacteria in batch conditions. In the semicontinuous fixed-bed reactor, the presence of sulfate did not affect dechlorination and methanogenesis. The sulfate-reducing bacteria may not be competitors of H(2)-consuming methanogens in the reactor because of the existence of microbial biofilm. The presence of the fixed film may be an advantage for bioremediation and industrial treatment of effluent charged in sulfate and PCE. This is the first report on the microbial ecology of a methanogenic and sulfate-reducing PCE-enrichment consortium.  相似文献   

10.
Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples extracted after a period of more than 10 years. Impacts on testate amoebae were tested using redundancy analysis and Mann–Whitney tests. Results showed statistically significant impacts on amoebae communities particularly noted by decreased abundance of Trinema lineare, Corythion dubium, and Euglypha rotunda. As the species most reduced in abundance are all small bacterivores we suggest that our results support the hypothesis of a shift in dominant prokaryotes, although other explanations are possible. Our results demonstrate the sensitivity of peatland microbial communities to sulfate deposition and suggest sulfate may be a potentially important secondary control on testate amoebae communities.  相似文献   

11.
To clarify the ecological significance of the association of sulfate-reducing bacteria (SRB) with sediment particle size, SRB utilizing lactate (l-SRB), propionate (p-SRB) and acetate (a-SRB) were examined with different sizes of sediment particles in a hypertrophic freshwater lake using the anaerobic plate count method. The numbers ofl-SRB anda-SRB were 104–105 colony forming units (CFU) per ml in the 0–3 cm layer and 102–103 CFU ml−1 in the 10–13 cm layer while the numbers ofp-SRB were one or two orders lower than those ofl-SRB anda-SRB. A sediment suspension was fractionated into four fractions (<1, 1–10, 10–94 and >94 μm). The highest proportions ofl-SRB anda-SRB were found in the 10–94 μm fraction: 66–97% forl-SRB and 53–98% fora-SRB. The highest proportion ofp-SRB was found in the >94 μm fraction (70–74%). These results indicate that most SRB were associated with sediment particles. One isolate from an acetate-utilizing enrichment culture was similar toDesulfotomaculum acetoxidans, a spore-forming sulfate-reducing bacterium. When lactate and sulfate were added to sediment samples,l-SRB anda-SRB in the <10 μm-fraction grew more rapidly than those in whole sediment for the first 2 days. This result suggests that nutrients uptake by free-living and small particle-associated (<10 μm) SRB is higher than that by SRB associated with larger particles.  相似文献   

12.
This study investigated the microbial community of the sulfate-reducing up-flow sludge bed (SRUSB) of a novel sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) process for saline sewage treatment. The investigation involved a lab-scale SANI® system treating synthetic saline sewage and a pilot-scale SANI® plant treating 10 m3/day of screened saline sewage. Sulfate-reducing bacteria (SRB) were the dominant population, responsible for more than 80% of the chemical oxygen demand removal, and no methane-producing archaea were detected in both SRUSBs. Thermotogales-like bacteria were the dominant SRB in the pilot-scale SRUSB while Desulforhopalus-like bacteria were the major species in the lab-scale SRUSB.  相似文献   

13.
The evaluation of enrichments from pristine hydrothermal vents sediments on its capability of reducing trichloroethylene (TCE) under sulfate reducing conditions with lactate and volatile fatty acids (VFAs) as substrates was performed. Effect of the possible TCE biodegradation intermediates cis and trans 1,2 dichloroethenes on sulfate reduction (SR) was also evaluated. The influence of cyanocobalamin (CNB12) and riboflavin (RF) on the SR and biodegradation of TCE was also determined. Sediments from the vents were incubated at 37°C and supplemented with 4 g l−1 SO4 2−, lactate or VFAs and amended in the corresponding treatments with either CNB12 or RF in separated experiments. A percentage of TCE removal of 86 (150 μmol l−1 initial concentration) was attained coupled to 48% sulfate depletion with lactate as substrate. Up to 93% removal of TCE (300 μmol l−1 initial concentration) and 40% of sulfate was reached for VFAs as electron donor. A combination of lactate and CNB12 yielded the best SR. The overall results suggest a syntrophic association in this microbial community in which sulfate reducers, dehalogenating, and probably halorespiring bacteria may be interacting and taking advantage of the fermentation of substrates differently, but without interruption of SR in spite of the fact that TCE was always present. It was also clear that sulfate reduction must be established in the cultures before any degradation can occur. The microbial community present in these hydrothermal vents sediments could be a new source of inoculum for bioreactors designed for dechlorination purposes.  相似文献   

14.
The aim of this study was to investigate the microbial community thriving at two shallow hydrothermal vents off Panarea Island (Italy). Physico-chemical characteristics of thermal waters were examined in order to establish the effect of the vents on biodiversity of both Bacteria and Archaea. Water and adjacent sediment samples were collected at different times from two vents, characterised by different depth and temperature, and analysed to evaluate total microbial abundances, sulphur-oxidising and thermophilic aerobic bacteria. Total microbial abundances were on average of the order of 105 cells ml−1, expressed as picoplanktonic size fraction. Picophytoplanktonic cells accounted for 0.77–3.83% of the total picoplanktonic cells. The contribution of bacterial and archaeal taxa to prokaryotic community diversity was investigated by PCR–DGGE fingerprinting method. The number of bands derived from bacterial DNA was highest in the DGGE profiles of water sample from the warmest and deepest site (site 2). In contrast, archaeal richness was highest in the water of the coldest and shallowest site (site 1). Sulphur-oxidising bacteria were detected by both culture-dependent and -independent methods. The primary production at the shallow hydrothermal system of Panarea is supported by a complex microbial community composed by phototrophs and chemolithotrophs.  相似文献   

15.
【目的】当前对全球冷泉生态系统微生物生态学研究显示,冷泉生态系统中主要微生物类群为参与甲烷代谢的微生物,它们的分布差异与所处冷泉区生物地球化学环境密切相关。但在冷泉区内也存在环境因子截然不同的生境,尚缺乏比较冷泉区内小尺度生境间微生物多样性和分布规律的研究。本研究旨在分析南海Formosa冷泉区内不同生境间微生物多样性差异,完善和理解不同环境因子对冷泉内微生物群落结构的影响。【方法】对采集自南海Formosa冷泉区不同生境(黑色菌席区、白色菌席区和碳酸盐岩区)沉积物样本中古菌和细菌16S rRNA基因进行测序,结合环境因子,比较微生物多样性差异,分析环境因子对微生物分布的影响。【结果】发现在Formosa冷泉内的不同生境中,甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)是主要古菌类群,占古菌总体相对丰度超过70%;在菌席区ANME-1b和ANME-2a/b是主要ANME亚群,碳酸盐岩区则是ANME-1b。硫酸盐还原菌(sulfate-reducing bacteria,SRB)和硫氧化菌(sulfur-oxidizing bacteria...  相似文献   

16.
The hydrochemistry and the microbial diversity of a pristine aquifer system near Garzweiler, Germany, were characterized. Hydrogeochemical and isotopic data indicate a recent activity of sulfate-reducing bacteria in the Tertiary marine sands. The community structure in the aquifer was studied by fluorescence in situ hybridization (FISH). Up to 7.3 × 105 cells/mL were detected by DAPI-staining. Bacteria (identified by the probe EUB338) were dominant, representing 51.9% of the total cell number (DAPI). Another 25.7% of total cell were affiliated with the domain Archaea as identified by the probe ARCH915. Within the domain Bacteria, the -Proteobacteria were most abundant (21.0% of total cell counts). Using genus-specific probes for sulfate-reducing bacteria (SRB), 2.5% of the total cells were identified as members of the genus Desulfotomaculum. This reflects the predominant role these microorganisms have been found to play in sulfate-reducing zones of aquifers at other sites. Previously, all SRB cultured from this site were from the spore-forming genera Desulfotomaculum and Desulfosporosinus.  相似文献   

17.
The diversity and the community structure of sulfate-reducing bacteria (SRB) in an anaerobic continuous bioreactor used for treatment of a sulfate-containing wastewater were investigated by fluorescence in situ hybridization. Hybridization to the 16S rRNA probe EUB338 for the domain Bacteria was performed, followed by a nonsense probe NON338 as a control for nonspecific staining. Sulfate-reducing consortia were identified by using five nominally genus-specific probes (SRB129 for Desulfobacter, SRB221 for Desulfobacterium, SRB228 for Desulfotomaculum, SRB660 for Desulfobulbus, and SRB657 for Desulfonema) and four group-specific probes (SRB385 as a general SRB probe, SRB687 for Desulfovibrioaceae, SRB814 for Desulfococcus group, and SRB804 for Desulfobacteriaceae). The total prokaryotic population was determined by 4′,6-diamidino-2-phenylindole staining. Hybridization analysis using these 16S rRNA-targeted oligonucleotide probes showed that, of those microbial groupings investigated, Desulfonema, Desulfobulbus, spp., and Desulfobacteriaceae group were the main sulfate-reducing bacteria in the bioreactor when operated at steady state at 35°C, pH 7.8, and a 2.5-day residence time with feed stream containing 2.5 kg m−3 sulfate as terminal electron acceptor and 2.3 kg m−3 acetate as carbon source and electron donor.  相似文献   

18.
Sulfate reduction is the most important process involved in the mineralization of carbon in the anoxic bottom waters of Mono Lake, an alkaline, hypersaline, meromictic Lake in California. Another important biogeochemical process in Mono Lake is thought to be sulfate-dependent methane oxidation (SDMO). However little is known about what types of organisms are involved in these processes in Mono Lake. Therefore, the sulfate-reducing and archaeal microbial community in Mono Lake was analyzed by targeting 16S rRNA, methyl-coenzyme M reductase (mcrA), adenosine-5′-phosphosulfate (apsA), and dissimilatory sulfite reductase (dsrAB) genes to investigate the sulfate-reducing and archaeal community with depth. Most of the 16S rRNA gene sequences retrieved from the samples fell into the δ-subdivision of the Proteobacteria. Phylogenetic analyses suggested that the clones obtained represented sulfate-reducing bacteria, which are probably involved in the mineralization of carbon in Mono Lake, many of them belonging to a novel line of descent in the δ-Proteobacteria. Only 6% of the sequences retrieved from the samples affiliated to the domain Euryarchaeota but did not represent Archaea, which is considered to be responsible for SDMO [Orphan et al. 2001: Appl Environ Microbiol 67:1922–1934; Teske et al.: Appl Environ Microbiol 68:1994–2007]. On the basis of our results and thermodynamic arguments, we proposed that SDMO in hypersaline environments is presumably carried out by SRB alone. Polymerase chain reaction (PCR) amplifications of the mcrA-, apsA-, and dsrAB genes in Mono Lake samples were, in most cases, not successful. Only the PCR amplification of the apsA gene was partially successful. The amplification of these functional genes was not successful because there was either insufficient “target” DNA in the samples, or the microorganisms in Mono Lake have divergent functional genes.  相似文献   

19.
Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5–1 μm × 3–4 μm long). Doubling times with acetate at 30–35°C were 5.6–8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related toMethanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5–0.7 μm × 1.5–3.5 μm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30°C the doubling times with acetate were 3.9–5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg isDesulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5–0.7 μm × 0.7–1 μm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20–25°C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg isVariovorax paradoxus.  相似文献   

20.
The effects of sulfate on the anaerobic degradation of lactate, propionate, and acetate by a mixed bacterial culture from an anaerobic fermenter fed with wine distillery waste water were investigated. Without sulfate and with both sulfate and molybdate, lactate was rapidly consumed, and propionate and acetate were produced; whereas with sulfate alone, only acetate accumulated. Propionate oxidation was strongly accelerated by the presence of sulfate, but sulfate had no effect on acetate consumption even when methanogenesis was inhibited by chloroform. The methane production was not affected by the presence of sulfate. Counts of lactate- and propionate-oxidizing sulfate-reducing bacteria in the mixed culture gave 4.5×108 and 1.5×106 viable cells per ml, respectively. The number of lactate-oxidizing fermentative bacteria was 2.2×107 viable cells per ml, showing that sulfate-reducing bacteria outcompete fermentative bacteria for lactate in the ecosystem studied. The number of acetoclastic methanogens was 3.5×108 viable cells per ml, but only 2.5×104 sulfate reducers were counted on acetate, showing that acetotrophic methanogens completely predominated over acetate-oxidizing sulfate-reducing bacteria. The contribution of acetate as electron donor for sulfate reduction in the ecosystem studied was found to be minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号