首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The RII-B isoform of the regulatory subunit (R) of cAMP-dependent protein kinase II is abundantly and selectively expressed in cerebral cortex (Erlichman, J., Sarkar, D., Fleischer, N., and Rubin, C. S. (1980) J. Biol. Chem. 255, 8179-8184). In contrast to the cytosolic RII-H isoform from heart and other non-neural tissues, a substantial fraction of cerebral cortex RII-B is tightly associated with cell organelles. In order to study the cellular basis for the localization and abundance of RII-B in this complex and heterogeneous tissue, rat cerebral cortex was fractionated into highly purified populations of neurons, astrocytes, and oligodendrocytes. In neurons and astrocytes more than 80% of the total cAMP-binding activity is contributed by RII subunits, whereas the myelin-producing oligodendrocytes contain nearly equal proportions of RI (from protein kinase I) and RII. Approximately 70% of RII and RI subunits are associated with the particulate fraction in each of the three types of brain cells. The nature of the RII isoforms expressed in the cytosolic and particulate fractions of the purified brain cells was established by performing Western immunoblot and indirect immunoprecipitation analyses with selective and sensitive polyclonal antibodies directed against RII-B. Astrocytes and neurons exhibit high levels of RII-B, whereas oligodendrocytes contain the RII-H isoform. Thus, the expression of RII isoforms is not uniform among brain cells that are anatomically and developmentally related. Rather, it appears that RII-B and RII-H are expressed in a cell-specific fashion within cerebral cortex and this might reflect an RII-mediated adaptation of protein kinase II to the specialized metabolic and functional roles of neurons, astrocytes, and oligodendrocytes.  相似文献   

2.
It is likely that neuronal loss occurs in certain brain regions in Alzheimer's Disease (AD) without any neurofibrillary pathology. In the human principle inferior olivary nucleus (PO), we have shown that neuronal loss is about 34% (Lasn et al. Journal of Alzheimer Disease, 2001; 3: 159-168), but the fate of the neuroglial cells is unknown. Since the unique network of neurons and neuroglial cells and their cohabitation are essential for normal functioning of CNS, we designed a study to estimate the total number of oligodendrocytes and astrocytes in normally aged and AD brains. The study is based on 10 control and 11 AD post-mortem human brains. An unbiased stereological fractionator method was used. We found significant oligodendroglial cell loss (46%) in AD as compared to control brains, while the total number of astrocytes showed a tendency to decrease. It is likely that the ratio of oligodendroglial cells to neurons remains unchanged even in degenerative states, indicating that oligodendroglial cells parallel neuronal loss. Astroglial cells did not increase in total number, but the ratio to neurons was significantly increased due to the neuronal loss. Using a novel unbiased quantitative method, we were able to describe significant oligodendroglial loss in the PO but the pathogenic mechanism behind remains unknown.  相似文献   

3.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

4.
Claudins (Cls) are a multigene family of transmembrane proteins with different tissue distribution, which have an essential role in the formation and sealing capacity of tight junctions (TJs). At the level of the blood–brain barrier (BBB), TJs are the main molecular structures which separate the neuronal milieu from the circulatory space, by a restriction of the paracellular flow of water, ions and larger molecules into the brain. Different studies suggested recently significant BBB alterations in both vascular and degenerative dementia types. In a previous study we found in Alzheimer’s disease (AD) and vascular dementia (VaD) brains an altered expression of occludin, a molecular partner of Cls in the TJs structure. Therefore in this study, using an immunohistochemical approach, we investigated the expression of Cl family proteins (Cl‐2, Cl‐5 and Cl‐11) in frontal cortex of aged control, AD and VaD brains. To estimate the number of Cl‐expressing cells, we applied a random systematic sampling and the unbiased optical fractionator method. We found selected neurons, astrocytes, oligodendrocytes and endothelial cells expressing Cl‐2, Cl‐5 and Cl‐11 at detectable levels in all cases studied. We report a significant increase in ratio of neurons expressing Cl‐2, Cl‐5 and Cl‐11 in both AD and VaD as compared to aged controls. The ratio of astrocytes expressing Cl‐2 and Cl‐11 was significantly higher in AD and VaD as compared to aged controls. The ratio of oligodendrocytes expressing Cl‐11 was significantly higher in AD and the ratio of oligodendrocytes expressing Cl‐2 was significantly higher in VaD as compared to aged controls. Within the cerebral cortex, Cls were selectively expressed by pyramidal neurons, which are the ones responsible for cognitive processes and affected by AD pathology. Our findings suggest a new function of Cl family proteins which might be linked to response to cellular stress.  相似文献   

5.
Neuromodulin (also called GAP43, G50, F1, pp46), a neural-specific calmodulin binding protein, is a major protein kinase C substrate found in developing and regenerating neurons. Here, we report the immunocytochemical characterization of neuromodulin in cultured 0-2A bipotential glial precursor cells obtained from newborn rat brain. Neuromodulin is also present in oligodendrocytes and type 2 astrocytes (stellate-shaped astrocytes), which are both derived from the bipotential glial 0-2A progenitor cells, but is absent of type 1 astrocytes (flat protoplasmic astrocytes). These results support the hypothesis of a common cell lineage for neurons and bipotential 0-2A progenitor cells and suggest that neuromodulin plays a more general role in plasticity during development of the central nervous system. The expression of neuromodulin in secondary cultures of newborn rat oligodendrocytes and its absence in type 1 astrocytes was confirmed by Northern blot analysis of isolated total RNA from these different types of cells using a cDNA probe for the neuromodulin mRNA and by Western blot analysis of the cell extracts using polyclonal antibodies against neuromodulin. The properties of the neuromodulin protein in cultured oligodendrocytes and neuronal cells have been compared. Although neuromodulin in oligodendrocytes is soluble in 2.5% perchloric acid like the neuronal counterpart it migrates essentially as a single protein spot on two-dimensional gel electrophoresis whereas the neuronal antigen can be resolved into at least three distinct protein spots. To obtain precise alignments of the different neuromodulin spots from these two cell types, oligodendrocyte and neuronal cell extracts were mixed together and run on the same two-dimensional gel electrophoresis system. Oligodendroglial neuromodulin migrates with a pI identical to the basic forms of the neuronal protein in isoelectric focusing gel. However, the glial neuromodulin shows a slightly lower mobility in the second dimensional lithium dodecyl sulfate-PAGE than its neuronal counterpart. As measured by 32Pi incorporation, neuromodulin phosphorylation in oligodendrocytes is dramatically increased after short-term phorbol ester treatments, which activate protein kinase C, and is totally inhibited by long-term phorbol ester treatments, which downregulates protein kinase C, thus confirming its probable specific in vivo phosphorylation by protein kinase C. In primary cultures of neuronal cells, two of the three neuromodulin spots were observed to be phosphorylated with an apparent preferential phosphorylation of the more acid forms.  相似文献   

6.
We examined the role of Notch signaling on the generation of neurons and glia from neural stem cells by using neurospheres that are clonally derived from neural stem cells. Neurospheres prepared from Dll1(lacZ/lacZ) mutant embryos segregate more neurons at the expense of both oligodendrocytes and astrocytes. This mutant phenotype could be rescued when Dll1(lacZ/lacZ) spheres were grown and/or differentiated in the presence of conditioned medium from wild-type neurospheres. Temporal modulation of Notch by soluble forms of ligands indicates that Notch signaling acts in two steps. Initially, it inhibits the neuronal fate while promoting the glial cell fate. In a second step, Notch promotes the differentiation of astrocytes, while inhibiting the differentiation of both neurons and oligodendrocytes.  相似文献   

7.
To test the specificity of N-acetylaspartate (NAA) as a neuronal marker for proton nuclear magnetic resonance (1H NMR) spectroscopy, purified and characterized cultured cells were analyzed for their NAA content using both 1H NMR and HPLC. Cell types studied included cerebellar granule neurons, type-1 astrocytes, meningeal cells, oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, and oligodendrocytes. A high concentration of NAA was found in extracts of cerebellar granule neurons (approximately 12 nmol/mg of protein), whereas NAA remained undetectable in purified type-1 astrocytes, meningeal cells, and mature oligodendrocytes. However, twice the neuronal level of NAA was found in O-2A progenitors grown in vitro. In addition significant levels of NAA were also detected in cultures of immature oligodendrocytes. Our data partly support previous suggestions that NAA may be a useful neuronal marker for 1H NMR spectroscopic examination of the adult brain. However, they also raise the further possibility that alterations of NAA associated with some specific brain disorders, particularly disorders seen in newborn and young children, may reflect abnormalities in the development of oligodendroglia or their precursors.  相似文献   

8.
Certain macroglial differences of the spinal cord in poikilothermal (Rana esculenta, Lacerta agilis) and in homoiothermal (Columba livia, Felis domesticus, Macaca rhesus) animals have been revealed. A greater amount of glial satellites, surrounding neurons, motor centers of the spinal cord and appearance of new variety of astrocytes and oligodendrocytes are observed in the homoiothermal animals. It is supposed that the phenomenon mentioned indirectly reflects the evolutionary process of a more distinct functional differentiation of macroglia.  相似文献   

9.
The hypothalamus of the opossum (Didelphis virginiana), the armadillo (Dasypus novemcinctus mexicanus), and the cat (Felis domestica) was studied using Del Rio Hortega's silver carbonate technique, as modified by Scharenberg ('60). This technique demonstrates astrocytes, oligodendroglia, and neuronal perikarya, but does not impregnate microglia. The morphology of macroglia was observed in ten comparable nuclei in each of the three species. The subpial and subependymal areas were also examined. Astrocytes display more cell body angularity and have more processes in most hypothalamic regions of the cat when compared to similar regions of the opossum and armadillo. In the anterior hypothalamic nucleus, the ventromedial and the dorsomedial hypothalamic nuclei, and the medial mammillary nucleus of all three species, astrocytes send processes to neurons, but neuronal and astrocytic perikarya are usually not directly contiguous. However, oligodendrocytes in a perisomatic position on neurons are a consistent feature in these nuclei. A closer relationship appears to exist between astrocytes and neurons in the neurosecretory nuclei. In the supraoptic nucleus and paraventricular nucleus of all three species a basket-like structure, designated a ?pericellular envelope”? was observed surrounding neuronal perikarya. This structure is composed of astrocytic and oligodendroglial cell bodies and processes, and is most highly developed in the cat. A dense astrocytic plexus was observed in the suprachiasmatic nucleus of the cat, and in the comparable nuclei of the armadillo and opossum. The most prominent macroglial cell type of the lateral hypothalamic and lateral mammillary nuclei of all three species is the interfascicular oligodendrocyte. The posterior hypothalamic nucleus of each species has many perisomatic oligodendrocytes, and in the armadillo and cat astrocytes are closely related to the larger neurons. A subpial plexus, consisting of a palisade of small glial cells with many processes, is present in the hypothalamus of the three species. Ependymal cells have long projecting processes throughout the length of the third ventricle in the armadillo hypothalamus, but such processes are only apparent in the region of the infundibular nucleus and median eminence in the opossum and cat.  相似文献   

10.
Amyloid precursor protein (APP) gene expression was investigated in primary cultures of neurons, astrocytes, microglial cells and oligodendrocytes. Neurons from various rat brain regions, as well as oligodendrocytes, contained RNA encoding APP695, while astrocytes and microglial cells expressed high levels of RNAs for APP770 and APP751. It was studied whether the cell type-specific regulation of APP gene expression could be modified by induction of cellular differentiation in vitro. While neuronal differentiation of PC12 cells has been shown to correspond with an altered pattern of APP splicing, in the primary cultures neither the time in culture nor a treatment of the cells with appropriate differentiation factors affected this pattern.  相似文献   

11.
The tumor necrosis factor (TNF)-alpha converting enzyme (TACE) can cleave the cell-surface ectodomain of the amyloid-beta precursor protein (APP), thus decreasing the generation of amyloid-beta (Abeta) by cultured non-neuronal cells. While the amyloidogenic processing of APP in neurons is linked to the pathogenesis of Alzheimer's disease (AD), the expression of TACE in neurons has not yet been examined. Thus, we assessed TACE expression in a series of neuronal and non-neuronal cell types by Western blots. We found that TACE was present in neurons and was only faintly detectable in lysates of astrocytes, oligodendrocytes, and microglial cells. Immunohistochemical analysis was used to determine the cellular localization of TACE in the human brain, and its expression was detected in distinct neuronal populations, including pyramidal neurons of the cerebral cortex and granular cell layer neurons in the hippocampus. Very low levels of TACE were seen in the cerebellum, with Purkinje cells at the granular-molecular boundary staining faintly. Because TACE was localized predominantly in areas of the brain that are affected by amyloid plaques in AD, we examined its expression in a series of AD brains. We found that AD and control brains showed similar levels of TACE staining, as well as similar patterns of TACE expression. By double labeling for Abeta plaques and TACE, we found that TACE-positive neurons often colocalized with amyloid plaques in AD brains. These observations support a neuronal role for TACE and suggest a mechanism for its involvement in AD pathogenesis as an antagonist of Abeta formation.  相似文献   

12.
The spatial position of astrocytes between neurons and the vascular endothelium might allow the astrocytic syncytium to act as a pathway for diffusion or active transport of substances between the environment of neurons and the cerebral blood vessels and ventricles. Furthermore, the intimate morphological arrangements between astrocytes and neurons might reflect biochemical cooperations between the cells. Astrocytes in the adult nervous system are in an unique position to regulate the environment of neurons and thereby their sensitivity. Some questions are raised: How do astrocytes receive neuronal signals? Are there local populations of astrocytes which respond specifically to small groups of neurons? Late results suggesting astrocytes to be a candidate for the supervision of neurotransmission are commented upon.  相似文献   

13.
Focal brain lesions such as transient focal cerebral ischemia can lead to neuronal damage in remote areas, including the ipsilateral substantia nigra and hippocampus, as well as in the ischemic core. In this study, we investigated acute changes in the ipsilateral hippocampus from 1 up to 7 days after 90 min of transient focal cerebral ischemia in rats, using anti-NeuN (neuronal nuclei), anti-Cu/Zn-superoxide dismutase (Cu/Zn-SOD), anti-Mn-SOD, anti-neuronal nitric oxide synthase (nNOS), anti-inducible NOS (iNOS), anti-glial fibrillary acidic protein (GFAP), anti-ionized calcium-binding adaptor molecule 1(Iba 1) and anti-2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) antibodies. In our western blot and histochemical analyses, present results show that transient focal cerebral ischemia in rats can cause a severe and acute damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector. The present findings also demonstrate that the expression of iNOS produced by Iba 1-immunopositive microglia precedes the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia. In contrast, our results suggest that increased reactive oxygen species (ROS) production during reperfusion cannot lead to damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia, because of an insufficient expression of Cu/Zn-SOD and Mn-SOD. Our double-labeled immunohistochemical study demonstrates that the overexpression of iNOS produced by Iba 1-immunopositive microglia may play a pivotal role in the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector at an acute stage after transient focal cerebral ischemia.  相似文献   

14.
The generation of neurons and oligodendrocytes from a common precursor cell   总被引:14,自引:0,他引:14  
B P Williams  J Read  J Price 《Neuron》1991,7(4):685-693
We have used a recombinant retrovirus carrying the lacZ gene to study the developmental potential of precursor cells from the embryonic rat cerebral cortex in dissociated cell culture. Virus was used to label a small number of cultured cells genetically so that their fate could be determined. Infected clones were detected with an anti-beta-galactosidase serum, and the labeled cells were identified using monoclonal antibodies. The results revealed that most precursor cells generated a single cell type, the majority being either neurons or oligodendrocytes. However, a proportion of the neuronal clones also included oligodendrocytes. This proportion increased until embryonic day 16 when 18% of the neuronal clones were of this type. This suggests that during neurogenesis in the cerebral cortex there exists a cell with the potential to generate these two quite different neural cell types.  相似文献   

15.
Alzheimer's disease is a chronic neurodegenerative disorder characterized by neuronal loss, cerebrovascular inflammation, and accumulation of senile plaques in the brain parenchyma and cerebral blood vessels. Amyloid-β peptide (Aβ), a major component of senile plaques, has been shown to exert multiple toxic effects to neurons, astrocytes, glial cells, and brain endothelium. Oligomeric Aβ can disturb the structure and function of cell membranes and alter membrane mechanical properties, such as membrane fluidity and molecular order. Much of these effects are attributed to their capability to trigger oxidative stress and inflammation. In this review, we discuss the effects of Aβ on neuronal cells, astrocytes, and cerebral endothelial cells with special emphasis on cell membrane properties and cell functions.  相似文献   

16.
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.  相似文献   

17.
We investigated postnatal alterations of neurons, interneurons and glial cells in the mouse substantia nigra using immunohistochemistry. Tyrosine hydroxylase (TH), neuronal nuclei (NeuN), parvalbumin (PV), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba 1), CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. In the present study, the maturation of NeuN-immunopositive neurons preceded the production of TH in the substantia nigra during postnatal development in mice. Furthermore, the maturation of nNOS-immunopositive interneurons preceded the maturation of PV-immunopositive interneurons in the substantia nigra during postnatal development. Among astrocytes, microglia and oligodendrocytes, in contrast, the development process of oligodendrocytes is delayed in the substantia nigra. Our double-labeled immunohistochemical study suggests that the neurotrophic factors such as BDNF and GDNF secreted by GFAP-positive astrocytes may play some role in maturation of neurons, interneurons and glial cells of the substantia nigra during postnatal development in mice. Thus, our findings provide valuable information on the development processes of the substantia nigra.  相似文献   

18.
Carbonic anhydrase (CA) V is a mitochondrial enzyme that has been reported in several tissues of the gastrointestinal tract. In liver, it participates in ureagenesis and gluconeogenesis by providing bicarbonate ions for two other mitochondrial enzymes: carbamyl phosphate synthetase I and pyruvate carboxylase. This study presents evidence of immunohistochemical localization of CA V in the rodent nervous tissue. Polyclonal rabbit antisera against a polypeptide of 17 C-terminal amino acids of rat CA V and against purified recombinant mouse isozyme were used in western blotting and immunoperoxidase stainings. Immunohistochemistry showed that CA V is expressed in astrocytes and neurons but not in oligodendrocytes, which are rich in CA II, or capillary endothelial cells, which express CA IV on their plasma face. The specificity of the immunohistochemical results was confirmed by western blotting, which identified a major 30-kDa polypeptide band of CA V in mouse cerebral cortex, hippocampus, cerebellum, spinal cord, and sciatic nerve. The expression of CA V in astrocytes and neurons suggests that this isozyme has a cell-specific, physiological role in the nervous system. In astrocytes, CA V may play an important role in gluconeogenesis by providing bicarbonate ions for the pyruvate carboxylase. The neuronal CA V could be involved in the regulation of the intramitochondrial calcium level, thus contributing to the stability of the intracellular calcium concentration. CA V may also participate in bicarbonate ion-induced GABA responses by regulating the bicarbonate homeostasis in neurons, and its inhibition could be the basis of some neurotropic effects of carbonic anhydrase inhibitors.  相似文献   

19.
We prepared a monoclonal antibody to microtubule-associated protein 1 (MAP 1), one of the two major high molecular weight MAP found in microtubules isolated from brain tissue. We found that MAP 1 can be resolved by SDS PAGE into three electrophoretic bands, which we have designated MAP 1A, MAP 1B, and MAP 1C in order of increasing electrophoretic mobility. Our antibody recognized exclusively MAP 1A, the most abundant and largest MAP 1 polypeptide. To determine the distribution of MAP 1A in nervous system tissues and cells, we examined tissue sections from rat brain and spinal cord, as well as primary cultures of newborn rat brain by immunofluorescence microscopy. Anti-MAP 1A stained white matter and gray matter regions, while a polyclonal anti-MAP 2 antibody previously prepared in this laboratory stained only gray matter. This confirmed our earlier biochemical results, which indicated that MAP 1 is more uniformly distributed in brain tissue than MAP 2 (Vallee, R.B., 1982, J. Cell Biol., 92:435-442). To determine the identity of cells and cellular processes immunoreactive with anti-MAP 1A, we examined a variety of brain and spinal cord regions. Fibrous staining of white matter by anti-MAP 1A was generally observed. This was due in part to immunoreactivity of axons, as judged by examination of axonal fiber tracts in the cerebral cortex and of large myelinated axons in the spinal cord and in spinal nerve roots. Cells with the morphology of oligodendrocytes were brightly labeled in white matter. Intense staining of Purkinje cell dendrites in the cerebellar cortex and of the apical dendrites of pyramidal cells in the cerebral cortex was observed. By double-labeling with antibodies to MAP 1A and MAP 2, the presence of both MAP in identical dendrites and neuronal perikarya was found. In primary brain cell cultures anti-MAP 2 stained predominantly cells of neuronal morphology. In contrast, anti-MAP 1A stained nearly all cells. Included among these were neurons, oligodendrocytes and astrocytes as determined by double-labeling with anti-MAP 1A in combination with antibody to MAP 2, myelin basic protein or glial fibrillary acidic protein, respectively. These results indicate that in contrast to MAP 2, which is specifically enriched in dendrites and perikarya of neurons, MAP 1A is widely distributed in the nervous system.  相似文献   

20.
Metabotropic Glutamate Receptors in Glial Cells   总被引:1,自引:1,他引:0  
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its actions via a number of ionotropic glutamate receptors/channels and metabotropic glutamate (mGlu) receptors. In addition to being expressed in neurons, glutamate receptors are expressed in different types of glial cells including astrocytes, oligodendrocytes, and microglia. Astrocytes are now recognized as dynamic signaling elements actively integrating neuronal inputs. Synaptic activity can evoke calcium signals in astrocytes, resulting in the release of gliotransmitters, such as glutamate, ATP, and d-serine, which in turn modulate neuronal excitability and synaptic transmission. In addition, astrocytes, and microglia may play an important role in pathology such as brain trauma and neurodegeneration, limiting or amplifying the pathologic process leading to neuronal death. The present review will focus on recent advances on the role of mGlu receptors expressed in glial cells under physiologic and pathologic conditions. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号