首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J Aymami  C M Nunn    S Neidle 《Nucleic acids research》1999,27(13):2691-2698
The crystal structure of the non-self-complementary dodecamer DNA duplex formed by d(CG[5BrC]ATAT-TTGCG) and d(CGCAAATATGCG) has been solved to 2.3 A resolution, together with that of its complex with the tris-benzimidazole minor groove binding ligand TRIBIZ. The inclusion of a bromine atom on one strand in each structure enabled the possibility of disorder to be discounted. The native structure has an exceptional narrow minor groove, of 2.5-2.6 A in the central part of the A/T region, which is increased in width by approximately 0.8 A on drug binding. The ligand molecule binds in the central part of the sequence. The benzimidazole subunits of the ligand participate in six bifurcated hydrogen bonds with A:T base pair edges, three to each DNA strand. The presence of a pair of C-H...O hydrogen bonds has been deduced from the close proximity of the pyrrolidine group of the ligand to the TpA step in the sequence.  相似文献   

2.
Lebrun A  Lavery R 《Biopolymers》1999,49(5):341-353
Molecular modeling is used to demonstrate that the major structural deformations of DNA caused by four different minor groove binding proteins, TBP, SRY, LEF-1, and PurR, can all be mimicked by stretching the double helix between two 3'-phosphate groups flanking the binding region. This deformation reproduces the widening of the minor groove and the overall bending and unwinding of DNA caused by protein binding. It also reproduces the principal kinks associated with partially intercalated amino acid side chains, observed with such interactions. In addition, when protein binding involves a local transition to an A-like conformation, phosphate neutralization, via the formation of protein-DNA salt bridges, appears to favor the resulting deformation.  相似文献   

3.
Two novel microgonotropens (MGTs) comprised of hairpin N-propylaminepyrrole polyamides linked to a Hoechst 33258 (Ht) analogue (3 and 4) were synthesized on solid phase by adopting an Fmoc technique using a series of HOBt mediated coupling reactions. The dsDNA-binding properties of MGTs 3 and 4 were determined by thermal denaturation experiments. Both MGTs were found to be selective for their nine-bp match dsDNA sequence 9 and were less tolerant of G/C bp substitutions in the binding region than linear progenitor MGT 1. MGT 3 was intolerant of a G/C substitution located in the middle of the binding region and did not bind to sequences 13 and 14. MGT 4 also did not bind to sequence 13, and its linker-bound Ht moiety was found to be more sensitive to a G/C substitution in the Ht-binding target, as demonstrated by the lack of binding to sequence 16.  相似文献   

4.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

5.
Varadarajan S  Shah D  Dande P  Settles S  Chen FX  Fronza G  Gold B 《Biochemistry》2003,42(48):14318-14327
Minor groove specific DNA equilibrium binding peptides (lex) based on N-methylpyrrole-carboxamide and/or N-methylimidazolecarboxamide subunits have been modified with an O-methyl sulfonate ester functionality to target DNA methylation in the minor groove at Ade/Thy- and/or Gua/Cyt-rich sequences. HPLC and sequencing gel analyses show that the Me-lex compounds all selectively react with DNA to afford N3-alkyladenine as a major adduct. The formation of the N3-alkyladenine lesions is sequence-dependent based on the equilibrium binding preferences of the different lex peptides. In addition to the reaction at adenine, the molecules designed to target Gua/Cyt sequences also generate lesions at guanine; however, the methylation is not sequence dependent and takes places in the major groove at the N7-position. To determine if and how the level of the different DNA adducts and the sequence selectivity for their formation affects cytotoxicity, the Me-lex analogues were tested in wild type Escherichia coli and in mutant strains defective in base excision repair (tag and/or alkA or apn). The results demonstrate the importance of 3-methyladenine, and in some cases 3-methylguanine, lesions in cellular toxicity, and the dominant protective role of the DNA glycosylases. There is no evidence that the sequence specificity is related to toxicity.  相似文献   

6.
The binding of lactose repressor to non-operator DNA was studied by the modification of several DNA's, including glycosylated DNA, with dimethyl sulphate, which affects the minor and major grooves of DNA and single stranded DNA regions. The non-specific binding of the repressor to DNA protected the minor groove but apparently not the major groove of the DNA double helix against methylation and did not increase the content of single stranded DNA regions. This suggests that the repressor on binding to non-operator DNA makes contacts mainly in the minor groove of DNA and does not uncoil the DNA double helix. This is different from the interaction of the repressor with lactose operator DNA which occurs, as shown by Gilbert et al. (1), along both the major and the minor groove.  相似文献   

7.
By using electromobility shift assay (EMSA), we have identified a protein able to recognize the DNA only if it was previously reacted with minor groove binders. This protein binds with very high affinity AT containing DNA treated with minor groove binders such as distamycin A, Hoechst 33258 and 33342, CC-1065 and ethidium bromide minor groove intercalator, but not with major groove binders such as quinacrine mustard, cisplatin or melphalan, or with topoisomerase I inhibitor camptothecin or topoisomerase II inhibitor doxorubicin. This protein was found to be present in different extracts of human, murine and hamster cells, with the human protein which appears to have a molecular weight slightly lower than that of the other species. This protein was found to be expressed both in cancer and normal tissues. By using molecular ultrafiltration techniques as well as southwestern analysis it was estimated that the apparent molecular weight is close to 100 kDa. We can exclude an identity between this protein and other proteins, with a similar molecular weight previously reported to be involved in DNA damage recognition/repair, such as topoisomerase I, mismatch repair activities such as the prokaryotic MutS protein and its human homologue hMSH2 or proteins of the nucleotide excision repair system such as ERCC1, -2, -3 and -4.  相似文献   

8.
A hairpin pyrrole polyamide conjugated to a Hoechst 33258 (Ht) analogue, PyPyPy-gamma-PyPyPy-gamma-Ht, was synthesized on solid-phase by adaptation of an Fmoc technique using a series of PyBOP/HOBt mediated coupling reactions. Sequence selectivity and complex stabilities were characterized by spectrofluorometric titrations and thermal melting studies. The polyamide of the conjugate was observed to bind in a hairpin motif forming 1:1 conjugate:dsDNA complexes. The conjugate is able to recognize nine contiguous A/T bps, discriminating from the sequences containing fewer than nine contiguous A/T bps.  相似文献   

9.
10.
Xia S  Christian TD  Wang J  Konigsberg WH 《Biochemistry》2012,51(21):4343-4353
Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10(2)-10(3)-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10(2)-10(3)-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n - 2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.  相似文献   

11.
12.
The sequence of non-contacted bases at the center of the 434 repressor binding site affects the strength of the repressor-DNA complex by influencing the structure and flexibility of DNA (Koudelka, G. B., and Carlson, P. (1992) Nature 355, 89-91). We synthesized 434 repressor binding sites that differ in their central sequence base composition to test the importance of minor groove substituents and/or the number of base pair hydrogen bonds between these base pairs on DNA structure and strength of the repressor-DNA complex. We show here that the number of base pair H-bonds between the central bases apparently has no role in determining the relative affinity of a DNA site for repressor. Instead we find that the affinity of DNA for repressor depends on the absence or presence the N2-NH(2) group on the purine bases at the binding site center. The N2-NH(2) group on bases at the center of the 434 binding site appears to destabilize 434 repressor-DNA complexes by decreasing the intimacy of the specific repressor-DNA contacts, while increasing the reliance on protein contacts to the DNA phosphate backbone. Thus, the presence of an N2-NH(2) group on the purines at the center of a binding site globally alters the precise conformation of the protein-DNA interface.  相似文献   

13.
Nitrogen mustards are commonly used in cancer chemotherapy. They interact with DNA at electronegative sites, primarily forming N7 guanine mono-adducts and interstrand cross-links. Targeting nitrogen mustards to DNA by attachment of a DNA minor groove binding carrier such as the bisbenzimidazoles Hoechst 33258 (pibenzimol) or Hoechst 33342 (HOE) makes it possible to direct DNA alkylation to more specific stretches of DNA. We have performed a detailed molecular analysis of 6-thioguanine resistant clones arising in Chinese hamster AS52 cells after treatment with HOE, in comparison with a mono- and bifunctional pair of bisbenzimidazole-targeted nitrogen mustards (MGBs). HOE showed no significant ability to induce 6-thioguanine resistant mutants, possibly because drug-treated cells are highly susceptible to apoptosis within very short times. Neither of the MGBs caused the rapid cell death seen with the bisbenzimidazole. However, both MGBs were weaker mutagens than previously found for undirected mustards in the same system, an effect that we suggest could relate to greater structure-directed binding to less mutable DNA sites in the minor groove. Additionally, the nature of some of the mutants suggested there may be a small component of topo I and/or II-mediated events in the mutagenicity of the MGBs. Both MGBs showed high activity in causing deletion mutations, which may be due to errors in attempted repair of the complex lesions formed by minor groove targeted alkylators.  相似文献   

14.
Synthetic polyamides composed of three types of aromatic amino acids, N-methylimidazole (Im), N-methylpyrrole (Py) and N-methyl-3-hydroxypyrrole (Hp) bind specific DNA sequences as antiparallel dimers in the minor groove. The side-by-side pairings of aromatic rings in the dimer afford a general recognition code that allows all four base-pairs to be distinguished. To examine the structural consequences of changing the DNA sequence context on T.A recognition by Hp/Py pairs in the minor groove, crystal structures of polyamide dimers (ImPyHpPy)(2) and the pyrrole counterpart (ImPyPyPy)(2) bound to the six base-pair target site 5'-AGATCT-3' in a ten base-pair oligonucleotide have been determined to a resolution of 2.27 and 2.15 A, respectively. The structures demonstrate that the principles of Hp/Py recognition of T.A are consistent between different sequence contexts. However, a general structural explanation for the non-additive reduction in binding affinity due to introduction of the hydroxyl group is less clear. Comparison with other polyamide-DNA cocrystal structures reveals structural themes and differences that may relate to sequence preference.  相似文献   

15.
The use of FTIR spectroscopy is made to study the interactions between polynucleotides and two series of minor groove binding compounds. The latter were developed and described previously as part of an ongoing program of rational design of modified ligands based on naturally occurring pyrrole amidine antibiotic netropsin, and varying the structure of bisbenzimidazole chromosomal stain Hoechst 33258. Characteristic IR absorptions due to the vibrations of thymidine and cytosine keto groups in polynucleotides containing AT and GC base pairs respectively are used to monitor their interaction with the added ligands. Although the two thiazole based lexitropsins based on netropsin structure differ in the relative orientation of nitrogen and sulfur atoms with respect to the concave edge of the molecules, they interact exclusively with the thymidine C2 = O carbonyl groups in the minor groove of the alternating AT polymer as evidenced by specific changes in the IR spectra. In the second series of compounds based on Hoechst 33258, the structure obtained by replacing the two benzimidazoles in the parent compound by a combination of pyridoimidazole and benzoxazole, exhibits changes in the carbonyl frequency region of poly dG.poly dC which is attributed to the ligand interaction at the minor groove of GC base pairs. In contrast, Hoechst 33258 itself interacts only with poly dA.poly dT. Weak or no interaction exists between the ligands and any of the polynucleotides at the levels of the phosphate groups or the deoxyribose units.  相似文献   

16.
The interactions of N-[2-(dimethylamino)ethyl]-1-methyl-4-[1-methyl-4-[4-formamido-1-meth ylimidazole-2-carboxamido]imidazole-2-carboxamido]imidazole-2-c arboxa mide (AR-1-144), a tri-imidazole polyamide minor groove binder, with DNA have been investigated by NMR and CD spectroscopy. A series of DNA oligonucleotides with a C/G-containing four-bp core, i.e. CCGG, CGCG, GGCC, and GCGC, have been titrated with AR-1-144 at different ratios. AR-1-144 favors the CCGG sequence. The flanking sequence of the CCGG core also influences the binding preference, with a C or T being favored on the 3'-side of the CCGG core. The three-dimensional structure of the symmetric 2:1 side-by-side complex of AR-1-144 and GAACCGGTTC, determined by NOE-constrained NMR refinement, reveals that each AR-1-144 binds to four base pairs, i.e. at C5-G6-G7-T8, with every amide-imidazole unit forming two potential hydrogen bonds with DNA. The same DNA binding preference of AR-1-144 was also confirmed by circular dichroism spectroscopy, indicating that the DNA binding preference of AR-1-144 is independent of concentration. The cooperative binding of an AR-1-144 homodimer to the (purine)CCGG(pyrimidine) core sequence appears to be weaker than that of the distamycin A homodimer to A/T sequences, most likely due to the diminished hydrophobic interactions between AR-1-144 and DNA. Our results are consistent with previous footprinting data and explain the binding pattern found in the crystal structure of a di-imidazole drug bound to CATGGCCATG.  相似文献   

17.
This study examines and compares DNA cleavage modes by several esperamicin derivatives and calicheamicin. We found that the deoxyfucose-anthranilate moiety is a key factor to determine their DNA cutting modes. Probably, the bulky moiety hinders the abstraction of hydrogen atom from deoxyribose by the C-1 carbon radical of phenylene diradical. On the basis of the experimental results, detailed DNA cleaving modes in DNA minor groove by esperamicin and calicheamicin have been discussed.  相似文献   

18.
DNA methylation patterns. Formation and function   总被引:26,自引:0,他引:26  
  相似文献   

19.
Plasmid DNA carrying the adenosine 3',5'-cyclic monophosphate receptor protein (crp) gene of Escherichia coli was irradiated, in solution, with X-rays, and the mutations produced in the crp gene were assayed by transforming the recipient E. coli cells. Ninety-six mutant clones were isolated, and mutational changes were determined by DNA sequencing. Of the 92 mutations thus detected, 74 represented base substitution mutations and the remaining 18 were frameshifts. The base substitutions included 56 G:C to A:T transitions, 10 G:C to T:A transversions and 7 G:C to C:G transversions. An A:T to G:C transition was found only once, and neither an A:T to T:A nor an A:T to C:G transversion was detected. The frameshift mutations consisted of 11 one-base deletions and 7 one-base insertions. Accordingly, G:C to A:T transition was the predominant type of mutation, which constituted 76% (56/74) of the total base substitutions and 60% (56/92) of all detected mutations. Furthermore, of the 56 transitions, about three-quarters (41 clones) clustered at an identical site, a cytosine residue at the 706 position, demonstrating that this site is a distinct hot spot for X-ray mutagenesis. These results raise the possibility that radiation-induced mutations may not necessarily occur randomly, at least in certain cases.  相似文献   

20.
The thiazole orange dye TOTO binds to double-stranded DNA (dsDNA) by a sequence selective bis-intercalation. Each chromophore is sandwiched between two base pairs in a (5'-CpT-3'):(5'-ApG-3') site, and the linker spans two base pairs in the minor groove. We have used one- and two-dimensional NMR spectroscopy to examine the dsDNA binding of an analogue of TOTO in which the linker has been modified to contain a bipyridyl group (viologen) that has minor groove binding properties. We have investigated the binding of this analogue, called TOTOBIPY, to three different dsDNA sequences containing a 5'-CTAG-3', a 5'-CTTAG-3', and a 5'-CTATAG-3' sites, respectively, demonstrating that TOTOBIPY prefers to span three base pairs. The many intermolecular NOE connectivities between TOTOBIPY and the d(CGCTTAGCG):d(CGCTAAGCG) oligonucleotide in the complex shows that the bipyridyl-containing linker is positioned in the minor groove and spans three base pairs. Consequently, we have succeeded in designing and synthesizing a ligand that recognizes an extended recognition sequence of dsDNA as the result of a concerted intercalation and minor groove binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号