首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Du  I Nasir  B K Benton  M P Kladde  B C Laurent 《Genetics》1998,150(3):987-1005
The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle.  相似文献   

2.
The detection of a DNA double-strand break (DSB) is necessary to initiate DSB repair. Several proteins, including the MRX/N complex, Tel1/ATM (ataxia telangiectasia mutated), and Mec1/ATR (ATM and Rad3 related), have been proposed as sensors of DNA damage, yet how they recognize the breaks is poorly understood. DSBs occur in the context of chromatin, implicating factors capable of altering local and/or global chromatin structure in the cellular response to DNA damage, including DSB sensing. Emerging evidence indicates that ATP-dependent chromatin-remodeling complexes function in DNA repair. Here we describe an important and novel early role for the RSC ATP-dependent chromatin remodeler linked to DSB sensing in the cell's DNA-damage response. RSC is required for full levels of H2A phosphorylation because it facilitates the recruitment of Tel1/ATM and Mec1/ATR to the break site. Consistent with these results, we also show that Rsc2 is needed for efficient activation of the Rad53-dependent checkpoint, as well as for Cohesin's association with the break site. Finally, Rsc2 is needed for the DNA-damage-induced changes in nucleosome structure surrounding the DSB site. Together, these new findings functionally link RSC to DSB sensing, highlighting the importance of ATP-dependent chromatin-remodeling factors in the cell's early response to DNA damage.  相似文献   

3.
4.
The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA. RSC also interacts genetically and physically with the histone and histone variant components of centromeric chromatin. Importantly, RSC is localized to centromeric and centromere-proximal chromosomal regions, and its association with these loci is dependent on Sth1p. Both sth1 and sfh1 mutants exhibit altered centromeric and centromere-proximal chromatin structure and increased missegregation of authentic chromosomes. Finally, RSC is not required for centromeric deposition of the histone H3 variant Cse4p, suggesting that RSC plays a role in reconfiguring centromeric and flanking nucleosomes following Cse4p recruitment for proper chromosome transmission.  相似文献   

5.
The yeast “remodels the structure of chromatin” (RSC) complex is a multi-subunit “switching deficient/sucrose non-fermenting” type ATP-dependent nucleosome remodeler, with human counterparts that are well-established tumor suppressors. Using temperature-inducible degron fusions of all the essential RSC subunits, we set out to map RSC requirement as a function of the mitotic cell cycle. We found that RSC executes essential functions during G1, G2, and mitosis. Remarkably, we observed a doubling of chromosome complements when degron alleles of the RSC subunit SFH1, the yeast hSNF5 tumor suppressor ortholog, and RSC3 were combined. The requirement for simultaneous deregulation of SFH1 and RSC3 to induce these ploidy shifts was eliminated by knockout of the S-phase cyclin CLB5 and by transient depletion of replication origin licensing factor Cdc6p. Further, combination of the degron alleles of SFH1 and RSC3, with deletion alleles of each of the nine Cdc28/Cdk1-associated cyclins, revealed a strong and specific genetic interaction between the S-phase cyclin genes CLB5 and RSC3, indicating a role for Rsc3p in proper S-phase regulation. Taken together, our results implicate RSC in regulation of the G1/S-phase transition and establish a hitherto unanticipated role for RSC-mediated chromatin remodeling in ploidy maintenance.  相似文献   

6.
7.
The Nrf2/antioxidant response element (ARE) signaling pathway plays a key role in activating cellular antioxidants, including heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase-1 (NQO1), and glutathione. Protein kinase C (PKC) may also regulate these antioxidants, as PKC phosphorylates Nrf2 in vitro. This study examined the role of PKC in ARE-mediated gene regulation in human monocytes by curcumin, a potent inducer of the Nrf2/ARE pathway. Curcumin increased HO-1 and glutamyl cysteine ligase modulator (GCLM) expression and stimulated Nrf2 binding to the ARE. Curcumin also rapidly stimulated PKC phosphorylation and Ro-31-8220, a pan-PKC inhibitor, decreased curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Rottlerin (a PKC delta inhibitor) and PKC delta antisense oligonucleotides significantly inhibited curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Furthermore, a p38 MAP kinase inhibitor reduced GCLM and HO-1 expression and rottlerin inhibited curcumin-induced p38 phosphorylation. In summary, curcumin activates ARE-mediated gene expression in human monocytes via PKC delta, upstream of p38 and Nrf2.  相似文献   

8.
9.
Post-translational acetylation of histone tails is often required for the recruitment of ATP-dependent chromatin remodelers, which in turn mobilize nucleosomes on the chromatin fiber. Here we show that the lower lobe of the ATP-dependent chromatin remodeler RSC exists in a dynamic equilibrium and can be found extended away or retracted against the tripartite upper lobe of the complex. Extension of the lower lobe increases the size of a central cavity that has been proposed to be the nucleosome binding site. We show that the presence of acetylated histone 3 N-terminal tail peptides stabilizes the lower lobe of RSC in the retracted state, suggesting that domains recognizing the acetylated histone tails reside at the interface between the two lobes. Based on three-dimensional reconstructions, we propose a model for the interaction of RSC with acetylated nucleosomes.  相似文献   

10.
The RSC chromatin remodeler contains Sth1, an ATP-dependent DNA translocase. On DNA substrates, RSC/Sth1 tracks along one strand of the duplex with a 3' --> 5' polarity and a tracking requirement of one base, properties that may enable directional DNA translocation on nucleosomes. The binding of RSC or Sth1 elicits a DNase I-hypersensitive site approximately two DNA turns from the nucleosomal dyad, and the binding of Sth1 requires intact DNA at this location. Results with various nucleosome substrates suggest that RSC/Sth1 remains at a fixed position on the histone octamer and that Sth1 conducts directional DNA translocation from a location about two turns from the nucleosomal dyad, drawing in DNA from one side of the nucleosome and pumping it toward the other. These studies suggest that nucleosome mobilization involves directional DNA translocation initiating from a fixed internal site on the nucleosome.  相似文献   

11.
The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for yeast cell growth and division. To identify additional components of the pathway in which PKC1 functions, we isolated extragenic suppressors of a pkc1 deletion mutant. All of the suppressor mutations were dominant for suppressor function and defined a single locus, which was designated BCK1 (for bypass of C kinase). A molecular clone of one suppressor allele, BCK1-20, was isolated on a centromere-containing plasmid through its ability to rescue a conditional pkc1 mutant. The BCK1 gene possesses a 4.4-kb uninterrupted open reading frame predicted to encode a 163-kDa protein kinase. The BCK1 gene product is not closely related to any known protein kinase, sharing only 45% amino acid identity with its closest known relative (the STE11-encoded protein kinase) through a region restricted to its putative C-terminal catalytic domain. Deletion of BCK1 resulted in a temperature-sensitive cell lysis defect, which was suppressed by osmotic stabilizing agents. Because pkc1 mutants also display a cell lysis defect, we suggest that PKC1 and BCK1 may normally function within the same pathway. Suppressor alleles of BCK1 differed from the wild-type gene in a region surrounding a potential PKC phosphorylation site immediately upstream of the predicted catalytic domain. This region may serve as a hinge between domains whose interaction is regulated by PKC1.  相似文献   

12.
Ohkuni K  Okuda A  Kikuchi A 《Genetics》2003,165(2):517-529
Nbp2p is a Nap1-binding protein in Saccharomyces cerevisiae identified by its interaction with Nap1 by a two-hybrid system. NBP2 encodes a novel protein consisting of 236 amino acids with a Src homology 3 (SH3) domain. We showed that NBP2 functions to promote mitotic cell growth at high temperatures and cell wall integrity. Loss of Nbp2 results in cell death at high temperatures and in sensitivity to calcofluor white. Cell death at high temperature is thought not to be due to a weakened cell wall. Additionally, we have isolated several type-2C serine threonine protein phosphatases (PTCs) as multicopy suppressors and MAP kinase-kinase (MAPKK), related to the yeast PKC MAPK pathway, as deletion suppressors of the nbp2Delta mutant. Screening for deletion suppressors is a new genetic approach to identify and characterize additional proteins in the Nbp2-dependent pathway. Genetic analyses suggested that Ptc1, which interacts with Nbp2 by the two-hybrid system, acts downstream of Nbp2 and that cells lacking the function of Nbp2 prefer to lose Mkk1, but the PKC MAPK pathway itself is indispensable when Nbp2 is deleted at high temperature.  相似文献   

13.
The effect of ERK, p38, and JNK signaling on p53-dependent apoptosis and cell cycle arrest was investigated using a Friend murine erythroleukemia virus (FVP)-transformed cell line that expresses a temperature-sensitive p53 allele, DP16.1/p53ts. In response to p53 activation at 32 degrees C, DP16.1/p53ts cells undergo p53-dependent G(1) cell cycle arrest and apoptosis. As a result of viral transformation, these cells express the spleen focus forming env-related glycoprotein gp55, which can bind to the erythropoietin receptor (EPO-R) and mimics many aspects of EPO-induced EPO-R signaling. We demonstrate that ERK, p38 and JNK mitogen-activated protein kinases (MAPKs) are constitutively active in DP16.1/p53ts cells. Constitutive MEK activity contributes to p53-dependent apoptosis and phosphorylation of p53 on serine residue 15. The pro-apoptotic effect of this MAPK kinase signal likely reflects an aberrant Ras proliferative signal arising from FVP-induced viral transformation. Inhibition of MEK alters the p53-dependent cellular response of DP16.1/p53ts from apoptosis to G(1) cell cycle arrest, with a concomitant increase in p21(WAF1), suggesting that the Ras/MEK pathway may influence the cellular response to p53 activation. p38 and JNK activity in DP16.1/p53ts cells is anti-apoptotic and capable of limiting p53-dependent apoptosis at 32 degrees C. Moreover, JNK facilitates p53 protein turnover, which could account for the enhanced apoptotic effects of inhibiting this MAPK pathway in DP16.1/p53ts cells. Overall, these data show that intrinsic MAPK signaling pathways, active in transformed cells, can both positively and negatively influence p53-dependent apoptosis, and illustrate their potential to affect cancer therapies aimed at reconstituting or activating p53 function.  相似文献   

14.
Saccharomyces cerevisiae Pkh1 and Pkh2 are functionally redundant homologs of mammalian protein kinase, phosphoinositide-dependent protein kinase-1. They activate two closely related, functionally redundant enzymes, Ypk1 and Ykr2 (homologs of mammalian protein kinase, serum- and glucocorticoid-inducible protein kinase). We found that Ypk1 has a more prominent role than Ykr2 in mediating their shared essential function. Considerable evidence demonstrated that Pkh1 preferentially activates Ypk1, whereas Pkh2 preferentially activates Ykr2. Loss of Pkh1 (but not Pkh2) reduced Ypk1 activity; conversely, Pkh1 overexpression increased Ypk1 activity more than Pkh2 overexpression. Loss of Pkh2 reduced Ykr2 activity; correspondingly, Pkh2 overexpression increased Ykr2 activity more than Pkh1 overexpression. When overexpressed, a catalytically active C-terminal fragment (kinase domain) of Ypk1 was growth inhibitory; loss of Pkh1 (but not Pkh2) alleviated toxicity. Loss of Pkh2 (but not Pkh1) exacerbated the slow growth phenotype of a ypk1Delta strain. This Pkh1-Ypk1 and Pkh2-Ykr2 dichotomy is not absolute because all double mutants (pkh1Delta ypk1Delta, pkh2Delta ypk1Delta, pkh1Delta ykr2Delta, and pkh2Delta ykr2Delta) were viable. Compartmentation contributes to selectivity because Pkh1 and Ypk1 were located exclusively in the cytosol, whereas Pkh2 and Ykr2 entered the nucleus. At restrictive temperature, ypk1-1(ts) ykr2Delta cells lysed rapidly, but not in medium containing osmotic support. Dosage and extragenic suppressors were selected. Overexpression of Exg1 (major exoglucanase), or loss of Kex2 (endoprotease involved in Exg1 processing), rescued growth at high temperature. Viability was also maintained by PKC1 overexpression or an activated allele of the downstream protein kinase (BCK1-20). Conversely, absence of Mpk1 (distal mitogen-activated protein kinase of the PKC1 pathway) was lethal in ypk1-1(ts) ykr2Delta cells. Thus, Pkh1-Ypk1 and Pkh2-Ykr2 function in a novel pathway for cell wall integrity that acts in parallel with the Pkc1-dependent pathway.  相似文献   

15.
16.
Khalfan W  Ivanovska I  Rose MD 《Genetics》2000,155(4):1543-1559
The earliest known step in yeast spindle pole body (SPB) duplication requires Cdc31p and Kar1p, two physically interacting SPB components, and Dsk2p and Rad23p, a pair of ubiquitin-like proteins. Components of the PKC1 pathway were found to interact with these SPB duplication genes in two independent genetic screens. Initially, SLG1 and PKC1 were obtained as high-copy suppressors of dsk2Delta rad23Delta and a mutation in MPK1 was synthetically lethal with kar1-Delta17. Subsequently, we demonstrated extensive genetic interactions between the PKC1 pathway and the SPB duplication mutants that affect Cdc31p function. The genetic interactions are unlikely to be related to the cell-wall integrity function of the PKC1 pathway because the SPB mutants did not exhibit cell-wall defects. Overexpression of multiple PKC1 pathway components suppressed the G2/M arrest of the SPB duplication mutants and mutations in MPK1 exacerbated the cell cycle arrest of kar1-Delta17, suggesting a role for the PKC1 pathway in SPB duplication. We also found that mutations in SPC110, which encodes a major SPB component, showed genetic interactions with both CDC31 and the PKC1 pathway. In support of the model that the PKC1 pathway regulates SPB duplication, one of the phosphorylated forms of Spc110p was absent in pkc1 and mpk1Delta mutants.  相似文献   

17.
In human neutrophils, IL-8 induces chemotaxis, the respiratory burst, and granule release, and enhances cellular adhesion, a beta(2) integrin-dependent event. IL-8 stimulates neutrophil adhesion to purified fibrinogen in a Mac-1-dependent manner. Mitogen-activated protein kinase (MAPK) activation was detected in human neutrophil lysates after treatment with IL-8 and PMA, but not the activating mAb CBR LFA 1/2. IL-8-stimulated neutrophil adhesion to fibrinogen was blocked 50% by the MAPK/extracellular signal-related kinase-activating enzyme inhibitor PD098059. Adhesion was blocked approximately 75% by inhibition of the phosphatidylinositol-3 kinase (PI3K) pathway with LY294002, supporting that activation of both MAPK and PI3K may play a role in IL-8-dependent inside-out signals that activate Mac-1. Activation of MAPK was inhibited in IL-8-stimulated cells in the presence of PI3K inhibitors LY294002 or wortmannin, supporting a model in which PI3K is upstream of MAPK. IL-8-stimulated neutrophil adhesion was inhibited 50% by bisindolylmaleimide-I, implicating protein kinase C (PKC) in the intracellular signaling from the IL-8R to Mac-1. A 74-kDa molecular mass species was detected by an activation-specific Ab to PKC when cells were stimulated with PMA or IL-8, but not a beta(2)-activating Ab. Inhibition of either MAPK or PKC resulted in partial inhibition of IL-8-stimulated polymorphonuclear neutrophil adhesion, and treatment with both inhibitors simultaneously completely abolished IL-8-stimulated adhesion to ligand. Inhibition of PI3K blocked MAPK activation, but not PKC activation, suggesting a branch point that precedes PI3K activation. These data suggest that both MAPK and PKC are activated in response to IL-8 stimulation, and that these may represent independent pathways for beta(2) integrin activation in neutrophils.  相似文献   

18.
19.
Both p21ras and protein kinase C (PKC) are believed to function downstream of plasma membrane-associated tyrosine kinases in cellular signal transduction pathways. However, it has remained controversial whether they function in the same pathway and, if so, what their relative position and functional relationship in such a pathway are. We investigated the possibilities that p21ras and PKC function either upstream or downstream of each other in a common linear pathway or that they function independently in colinear signal pathways. Either decreased expression of endogenous normal ras in fibroblasts transfected with an inducible antisense ras construct or overexpression of a mutant ras gene reduced the capacity of the phorbol ester tetradecanoyl phorbol acetate to trigger expression of the tetradecanoyl phorbol acetate-responsive and ras-dependent reporter gene osteopontin (OPN). PKC depletion decreased basal OPN mRNA levels, and the overexpression of ras restored OPN expression to the level of non-PKC-depleted cells. We propose a model in which ras and PKC function in distinct and interdependent signaling pathways.  相似文献   

20.
Human alveolar macrophages respond to endotoxin (LPS) by activation of a number of mitogen-activated protein kinase pathways, including the p42/44 (extracellular signal-related kinase (ERK)) kinase pathway. In this study, we evaluated the role of the atypical protein kinase C (PKC) isoform, PKC zeta, in LPS-induced activation of the ERK kinase pathway. Kinase activity assays showed that LPS activates PKC zeta, mitogen-activated protein/ERK kinase (MEK, the upstream activator of ERK), and ERK. LPS did not activate Raf-1, the classic activator of MEK. Pseudosubstrate-specific peptides with attached myristic acid are cell permeable and can be used to block the activity of specific PKC isoforms in vivo. We found that a peptide specific for PKC zeta partially blocked activation of both MEK and ERK by LPS. We also found that this peptide blocked in vivo phosphorylation of MEK after LPS treatment. In addition, we found that LPS caused PKC zeta to bind to MEK in vivo. These observations suggest that MEK is an LPS-directed target of PKC zeta. PKC zeta has been shown in other systems to be phosphorylated by phosphatidylinositol (PI) 3-kinase-dependent kinase. We found that LPS activates PI 3-kinase and causes the formation of a PKC zeta/PI 3-kinase-dependent kinase complex. These data implicate the PI 3-kinase pathway as an integral part of the LPS-induced PKC zeta activation. Taken as a whole, these studies suggest that LPS activates ERK kinase, in part, through activation of an atypical PKC isoform, PKC zeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号