首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the cyclic AMP-dependent plasma membrane phosphorylation system of undifferentiated and differentiated L6 myogenic cells have been detected. Endogenous plasma membrane protein phosphorylation in undifferentiated L6 myoblasts was stimulated more than three fold by 5 x 10(-5) M cyclic AMP, whereas no statistically significant cyclic AMP-dependent phosphorylation of endogenous plasma membrane proteins was observed in differentiated L6 cells. In undifferentiated cells cyclic AMP promoted the phosphorylation of several proteins, the most prominent of which had a molecular weight of 110,000. In differentiated cells cyclic AMP did not selectively promote the phosphorylation of specific plasma membrane proteins. Both differentiated and undifferentiated L6 cells, however, contain a cyclic AMP-dependent protein kinase capable of catalyzing the phosphorylation of exogenous substrates, such as histone f2b. Therefore, the data show that differentiation in L6 cells is associated with a selective change in the activity of a plasma membrane cyclic AMP-dependent protein kinase which employs endogenous membrane proteins as substrate.  相似文献   

2.
Cytosolic cyclic AMP-binding capacity and cyclic AMP-dependent protein kinase activity have been studied in relation to differentiation and maturation of rabbit bone marrow erythroblasts. Using cells fractionated by velocity sedimentation at unit gravity, it was found that both activities decreased in dividing cells when calculated in terms of cell number but remained constant per cell volume. After the final cell division, cyclic AMP-dependent protein kinase activity did not change further, whereas cyclic AMP-binding capacity declined. There were no qualitative, but only quantitative, changes in the cyclic AMP-binding proteins that are present in the cytosol of developing erythroblasts. In the immature cells, the apparent KD for the interaction of binding proteins with cyclic AMP was 4 X 10(-8) M. The data suggest that changes in cyclic AMP-binding activity during differentiation of erythroid cells are due both to changes in the amount of binding proteins and in their affinity for cyclic AMP. Plasma membranes of erythroblasts were also able to bind cyclic AMP but only in dividing cells.  相似文献   

3.
Differences in the cyclic AMP-dependent plasma membrane phosphorylation system of undifferentiated and differentiated L6 myogenic cells have been detected. Endogenous plasma membrane protein phosphorylation in undifferentiated L6 myoblasts was stimulated more than three fold by 5 × 10−5 M cyclic AMP, whereas no statistically significant cyclic AMP-dependent phosphorylation of endogenous plasma membrane proteins was observed in differentiated L6 cells. In undifferentiated cells cyclic AMP promoted the phosphorylation of several proteins, the most prominent of which had a molecular weight of 110,000. In differentiated cells cyclic AMP did not selectively promote the phosphorylation of specific plasma membrane proteins. Both differentiated and undifferentiated L6 cells, however, contain a cyclic AMP-dependent protein kinase capable of catalyzing the phosphorylation of exogenous substrates, such as histone f2b. Therefore, the data show that differentiation in L6 cells is associated with a selective change in the activity of a plasma membrane cyclic AMP-dependent protein kinase which employs endogenous membrane proteins as substrate.  相似文献   

4.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 +/- 115 fmol/micrograms DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 +/- 17 fmol/microgram DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

5.
Suspensions of isolated rat hepatocytes and adipocytes converted exogenous ATP to cyclic AMP at a rate which was about 30--50% of that observed with homogenates of isolated cells. Formation of cyclic AMP was stimulated by hormones (isoprenaline in the case of adipose tissue and glucagon in the case of liver) and sodium fluoride. Experiments with [alpha-32P]ATP indicated that the conversion of exogenous ATP to cyclic AMP did not occur within the cells. It is proposed that in isolated hepatocytes ad adipocytes some catalytic units of adenylate cyclase are exposed on the outer surface of the cell membrane.  相似文献   

6.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 ± 115 fmol/μg DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 ± 17 fmol/μg DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

7.
Regulation of cyclic AMP-dependent protein kinase, cyclic AMP-receptor activity and intracellular cyclic AMP concentrations by choriogonadotropin was studied in ovarian cells prepared from 26-day-old rats. A close correlation was observed between phospho-transferase activity and cyclic AMP-receptor activity in 12000g supernatant fractions from rat ovarian homogenate. The apparent activation constant (K(a)) and I(50) (concentration required to produce 50% inhibition) of different cyclic nucleotides for phosphotransferase and cyclic AMP receptor activities respectively were also determined. Cyclic AMP and 8-bromo cyclic AMP were most effective, giving K(a) values of 0.08 and 0.09mum and I(50) of 0.12 and 0.16mum respectively. Other nucleotides were also effective, but required higher concentrations to give a comparable effect. An increased concentration of cyclic AMP produced by choriogonadotropin (1mug/ml) treatment was accompanied by decreased cyclic AMP binding as early as 5min after hormone addition. Choriogonadotropin also stimulated the protein kinase activity ratio (-cyclic AMP/+cyclic AMP) under identical experimental conditions. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine potentiated the action of choriogonadotropin on the three parameters measured in a dose- and time-dependent manner. The maximal cyclic AMP-binding capacity, as determined by cyclic AMP-exchange assay, remained unchanged before and after hormone addition. The endogenously bound cyclic AMP was determined from the difference between the maximal binding capacity and the exogenously bound cyclic AMP. With different choriogonadotropin concentrations, a quantitative correlation was established between maximal binding capacity, exogenous binding and endogenous binding activities. Approx. 60% of total binding sites were endogenously occupied in untreated cells, and choriogonadotropin (1mug/ml) treatment fully saturated available binding sites with a parallel 10-fold increase in cellular cyclic AMP. The present results provide evidence for a probable intracellular compartmentalization of cyclic AMP in the ovarian cell, and suggest that in the unstimulated state all cyclic AMP present in the ovarian cell may not be available for protein kinase activation.  相似文献   

8.
Primary cultures of purified astroglia have been shown to exhibit a variety of membrane receptors that regulate intracellular cyclic AMP levels. The experiments described in this paper were completed to examine the effect of such receptor agonists on protein phosphorylation in intact astroglia. An analysis of 32P-labelled proteins derived from whole cell extracts and separated via two-dimensional gel electrophoresis indicated that increasing cyclic AMP levels in astroglia stimulated the phosphorylation of two distinct proteins that had apparent molecular weights/isoelectric points (pI) of 51K/6.0 and 57K/5.7. Similar experiments with cultured meningeal cells indicated that only the 57K/5.7 protein was phosphorylated in response to elevated levels of cyclic AMP. The 51K/6.0 protein was never observed in gels derived from meningeal cells. Immunoblot experiments indicated that the 51K/6.0 protein stained with antiserum to glial fibrillary acidic protein (GFAP) and the 57K/5.7 protein stained with antibodies to vimentin. Concentration-effect studies indicate that these proteins are maximally phosphorylated at concentrations of receptor agonists that only slightly elevate cyclic AMP levels. All receptor agonists that have been shown to increase cyclic AMP levels appear similarly efficacious with respect to increasing the phosphorylation of the two proteins. These experiments suggest that the membrane receptors present on astroglia function, in part, to regulate phosphorylation of the intermediate filament proteins GFAP and vimentin.  相似文献   

9.
Cyclic AMP is a second messenger for various hormones that inhibits cell multiplication and DNA synthesis in cultured astrocytes. We examined the effects of increasing intracellular cyclic AMP on the catalytic (cdks) and regulatory (cyclins and ckis) components of cyclin-dependent protein kinases, which regulate progression of the cell cycle before completion of DNA synthesis, in primary cultured astrocytes and in an astrocytic cell line C.LT.T.1.1. The amount of cdk4 changed little during the cell cycle and was not affected by cyclic AMP. There was little cdk1 and cdk2 in quiescent cells, and their expression increased during the G1-S phases. Cyclic AMP strongly inhibited cdk1 and cdk2 expression. Transforming growth factor beta also inhibited cdk1 expression in primary astrocytes. Cyclic AMP did not affect the two ckis p27KIP1 and p21CIP1. There was little cyclin D1 in quiescent cells, but it increased during the G1 phase and was reduced by cyclic AMP. Cyclin E increased during the G1-S phases and was not affected by cyclic AMP in primary astrocytes. The amount of cyclin A was low in quiescent cells and increased during the G1-S phases. Expression of its mRNA and protein was inhibited by cyclic AMP. The protein kinase activities associated with complexes of cyclins and cdks were increased by growth factors and prevented by cyclic AMP. We conclude that cyclic AMP inhibits progression of the cell cycle in astrocytes at least by preventing the expression of the regulatory subunits, cyclins D1 and A, and catalytic subunits, cdk1 and cdk2, of cyclin-regulated protein kinases. Key Words: Cyclin-dependent protein kinases-Glial cells-Cyclic AMP.  相似文献   

10.
Polyploidization of 2nH1 (ES) cells by K-252a and staurosporine   总被引:1,自引:0,他引:1  
Mouse 2nH1 (ES) cells were examined for polyploidization using K-252a and staurosporine. Though 2nH1 cells were polyploidized by both K-252a and staurosporine, tetraploid cells, 4nH1K cells, were obtained only from cell populations exposed to K-252a. The probability of successful establishment of tetraploid cells was 2/9, suggesting that the highly polyploidized-tetraploid transition might occur infrequently. Cell cycle parameters of 4nH1K cells were almost the same as those of 2nH1 cells, suggesting that the rate of DNA synthesis was about twice that of the diploid cells. The cell volume of 4nH1K cells was about twice of that of diploid cells, indicating that 4nH1K cells contained about twice as much total intracellular material as 2nH1 cells. The morphology of the 4nH1K cells was flagstone-like, thus differing from that of the spindle-shaped 2nH1 cells, suggesting that morphological transformation occurred during the diploid-tetraploid transition. 4nH1K cells exhibited alkaline phosphatase activity and formed teratocarcinomas, implying that they were pluripotent. These characteristics of 4nH1K cells were similar to those of tetraploid 4nH1 cells that have been established through polyploidization by demecolcine, suggesting that 4nH1K and 4nH1 cells are similar irrespective of the different mechanisms of polyploidization.  相似文献   

11.
A Na+/K+/Cl- cotransport pathway has been examined in the HT29 human colonic adenocarcinoma cell line using 86Rb as the K congener. Ouabain-resistant bumetanide-sensitive (OR-BS) K+ influx in attached HT29 cells was 17.9 +/- 0.9 nmol/min per mg protein at 25 degrees C. The identity of this pathway as a Na+/K+/Cl- cotransporter has been deduced from the following findings: (a) OR-BS K+ influx ceased if the external Cl- (Cl-o) was replaced by NO3- or the external Na+ (Na+o) by choline; (b) neither OR-BS 24Na+ nor 36Cl- influx was detectable in the absence of external K+ (K+o); and (c) concomitant measurements of 86Rb+, 22Na+, and 36Cl- influx indicated that the stoichiometry of the cotransport system approached a ratio of 1N+:1K+:2Cl-. In addition, OR-BS K+ influx was exquisitely sensitive to cellular ATP levels. Depletion of the normal ATP content of 35-40 nmol/mg protein to 10-15 nmol/mg protein, a concentration at which the ouabain-sensitive K+ influx was unaffected, completely abolished K+ cotransport. OR-BS K+ influx was slightly reduced by the divalent cations Ca2+, Ba2+, Mg2+ and Mn2+. Although changes in cell volume, whether shrinking or swelling, did not influence OR-BS K+ influx, ouabain-sensitive K+ influx was activated by cell swelling. As in T84 cells, we found that the OR-BS K+ influx in HT29 cells was stimulated by exogenous cyclic AMP analogues and by augmented cyclic AMP content in response to vasoactive intestinal peptide, forskolin, norepinephrine and forskolin or prostaglandin E1.  相似文献   

12.
The dependence of cell proliferation on nuclear protein phosphorylation was studied with exponential-phase and stationary-phase cultures of Chinese-hamster ovary cells. Nuclear proteins were fractionated, according to their DNA-binding affinities, by using sequential extractions of isolated nuclei with increasing concentrations of NaCl. When viable whole cells were labelled with H332PO4, phosphorylation of nuclear proteins was found to be lower in quiescent cells than in proliferating cells. Phosphorylation of nuclear proteins soluble in 0.30M-NaCl (less than 50% of these proteins bind to DNA) was greater than for those proteins soluble in higher salt concentrations (80-100% of these proteins bind to DNA). Cyclic AMP enhanced the phosphorylation of nuclear proteins soluble in 0.3 m-NaCl by 40-50%, and this stimulation was independent of cell growth. Cyclic AMP also increased the phosphorylation of nuclear proteins soluble in 0.6M-NaCl and 2.0M-NaCl by 40-50% in exponential-phase cultures, but not in stationary-phase cultures. Several examples of specific phosphorylation in response to cyclic AMP were observed, including a 35000-mol.wt. protein in the 0.30 M-NaCl-soluble fraction and several proteins larger than 100000 molecular weight within this fraction. A major peptide of molecular weight approx. 31000 extracted with 0.6M-NaCl was also phosphorylated. Its phosphorylation was independent of cyclic AMP in exponential-phase cultures, and it was not phosphorylated in plateau-phase cells. These changes in cell-growth-dependent phosphorylation occurred in the absence of any apparent qualitative changes in the nuclear protein molecular-weight distributions. These data demonstrate that (1) phosphorylation of nuclear proteins is dependent on the culture's proliferative status, (2) both cyclic AMP-dependent and cyclic AMP-independent specific phosphorylation occurs, and (3) the cyclic AMP-dependent growth-independent phosphorylation that occurs does not appear to be a modification of DNA-binding proteins, whereas the cyclic AMP-dependent growth-dependent phosphorylation does involve modification of DNA binding proteins.  相似文献   

13.
The beta-adrenergic blocker dl-propranolol prevented a large proportion of regenerating rat liver cells from entering the mitotic phase of their first cell division cycle without affecting their ability to initiate or complete DNA replication. The drug, at a dose of 20 or 50 mg/kg of body weight, was most effective in reducing mitosis when injected between 1 and 2 hours after the proliferatively activating partial hepatectomy, which was 22 to 23 hours before the peak of DNA-synthetic activity. Propranolol also inhibited the early prereplicative surge of total liver cyclic AMP, which occurs shortly after partial hepatectomy, but this effect was not correlated to the mitosis-inhibiting activity. However, cyclic AMP or dibutyryl cyclic AMP completely reversed propranolol's mitosis-inhibiting action when injected between 1.5 and 2 hours (but not sooner or later) after partial hepatectomy, which was just before the total liver cyclic AMP content began to rise. Thus, there appears to be a transient, propranolol-inhibitable, probably cyclic AMP-initiated event in the early prereplicative development of rat hepatocytes that determines entry into mitosis rather than the initiation of DNA replication.  相似文献   

14.
Tyrosine hydroxylase (TH) contained in dopamine (DA) neurons of rat retina is activated in vivo as a consequence of photic stimulation. Experiments were conducted to test the effects of changes of membrane potential and of cyclic AMP-dependent protein phosphorylation on TH activity of these retinal neurons. Retinas were dissociated into suspensions of apparently viable cells to test the direct effects of pharmacological manipulations on TH activity in the absence of trans-synaptic influences. To test the effects of changes of membrane potential on TH activity we examined the effects of a depolarizing agent, potassium. Incubation of cell suspensions in Ringer's solution containing a depolarizing concentration of K+ (52 mM) resulted in a significant increase of TH activity, suggesting that membrane depolarization may trigger a series of molecular events that leads to TH activation. Incubation of cell suspensions in the presence of 8-bromo cyclic AMP, a cyclic AMP analog that is known to activate cyclic AMP-dependent processes following extra-cellular application, resulted in a significant activation of TH that was comparable to that produced in vitro by cyclic AMP-dependent protein phosphorylation. These data support the hypothesis that membrane potential plays a role in the regulation of TH activity, and indicate that cyclic AMP-dependent phosphorylation can activate retinal TH in situ. The apparent viability of the retinal cells in suspension suggests that this preparation may be useful for studying synaptic regulatory mechanisms.  相似文献   

15.
Primary cultures containing ≥99% neurons, ≥99% non-neuronal cells (glia), or both cell types were prepared from the sympathetic ganglia of 12-day chick embryos. Levels of cyclic AMP in the non-neuronal cells (~14 pmol/mg protein) were approximately 3-fold higher than levels in the neurons (~4 pmol/mg protein). Mixed cultures had concentrations of cyclic AMP which fell between the values measured for pure neuronal and pure non-neuronal cultures. The measured cyclic AMP values of mixed cultures were indistinguishable from values predicted by summing the expected contributions of the neurons and non-neuronal cells. Thus, contact between the neurons and non-neuronal cells in these mixed cultures did not appear to alter the level of cyclic AMP in either cell type. Neuronal-glial interactions, such as the specific neuronal stimulation of non-neuronal cell proliferation, occurred independently of any changes in the level of cyclic AMP in the mixed cultures. Cell density was varied in both pure and mixed cultures, and both cyclic AMP concentrations and amounts of [3H]thymidine incorporation into DNA were measured. The cyclic AMP content of the non-neuronal cells varied inversely with cell density. [3H]Thymidine incorporation was independent of cell density in both neuronal and non-neuronal cultures. Parallel density-dependent decreases in cyclic AMP concentration and [3H]thymidine incorporation were observed in mixed cultures as cell density was increased. The data suggest that there is no relationship between changes in rate of non-neuronal cell proliferation and cyclic AMP levels in these cultures.  相似文献   

16.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

17.
Cyclic adenosine monophosphate arrests proliferating T lymphocytes in the G1 phase of the cell cycle. Here we demonstrate that exogenous and endogenous elevations in cyclic AMP concentration result in diminished mitogen stimulation, cell cycle arrest, and decreased ribonucleotide reductase messenger RNA concentrations in peripheral blood mononuclear cells. At lower concentrations (less than 1mM) of dibutyryl cyclic AMP that do not generate cell cycle arrest there is inhibition of ribonucleotide reductase activity without decreased messenger RNA concentration for the M2 subunit of ribonucleotide reductase. However, at higher concentrations of dibutyryl cyclic AMP there is G1 cell cycle arrest and reduced M2 specific messenger RNA concentration. Thus, cyclic AMP inhibition of lymphocyte activation may occur by different mechanisms that are dose dependent.  相似文献   

18.
Cyclic AMP levels in Ehrlich ascites tumor cells changed little after deprivation of cells of essential nutrients, serum, glucose and amino acids, deprival of each of which leads to marked inhibition of growth and protein synthesis. Cyclic AMP levels also changed little after the addition of these nutrients to deprived cells. Thus cyclic AMP is not likely to be the intracellular mediator for growth regulation by these three nutrients. Elevation of cyclic AMP levels for short periods by exposure of cells to choleratoxin or theophylline produced only slight changes in parameters of protein synthesis (polyribosome pattern and rate of [3H]leucine incorporation). An exposure for 1 day to dibutyryl cyclic AMP did not inhibit cell growth. However, prolonged exposure to dibutyryl cyclic AMP inhibited the multiplication of Ehrlich ascites cells both in suspension and in stationary cultures. No morphological effects were evident in the former; in the latter, cells attached firmly to the substratum and formed elongated cytoplasmic processes. Inhibition of cell multiplication by dibutyryl cyclic AMP was related to cell density and to serum concentration. Cells in dibutyryl cyclic AMP-containing media plated at low cell densities multiplied as rapidly as control cells. The final densities cells reached were determined by the serum concentration; in dibutyryl cyclic AMP-containing media these densities were about one-half those of respective control cells. Limitation of cell multiplication by dibutyryl cyclic AMP was reversed by the addition of serum, by resuspending cells at lower densities, or by resuspending cells in media without dibutyryl cyclic AMP. These findings suggested that dibutyryl cyclic AMP may affect the utilization of serum factors by cells. Dibutyryl cyclic AMP did not inactivate serum factors and did not change the rate at which cells depleted the growth medium of serum factors. Dibutyryl cyclic AMP may limit cell multiplication by increasing the cellular requirement for serum factors.  相似文献   

19.
By means of a K+-sensitive electrode, the extracellular K+ concentration was monitored in cell suspensions of Dictyostelium discoideum. In aggregative cells the attractant cyclic AMP induced a transient release of K+. The response was detectable within 6-12 s and peaked at 30-40 s. The apparent rate of release amounted to 7 X 10(8)K+ ions per cell per min. Adenosine and 5' AMP, which are chemotactically inactive, did not elicit measurable K+ responses. The cyclic AMP-induced release of K+ depended on the state of differentiation of the cells. In undifferentiated cells cyclic AMP did not cause a measurable K+ release, whereas folic acid, a potent attractant at this cell stage, induced a weak but significant K+ response. The cyclic AMP-induced K+ release in aggregative cells was inhibited by K+-channel blockers such as quinine and tetraethylammonium. In suspensions of differentiated cells free running oscillations of the extracellular K+ concentration were observed. K+ oscillations were related to cyclic AMP oscillations and oscillations of the light-scattering properties of cells. Cells continuously released NH4+; however, cyclic AMP did not induce a measurable change of NH4+ release.  相似文献   

20.
Addition of cyclic AMP causes disorder in the multicellular stage of a number of species of cellular slime molds. In those which produce fruits with cellular stalks, the addition of cyclic AMP stimulates prestalk cells to differentiate into mature stalk cells. Prespore cells do not differentiate into spores under the influence of cyclic AMP, most degenerate and seem to die. I hypothesize that the normal course of differentiation from vegetative cells is one leading to spores, but that cyclic AMP can divert this course to one leading to the stalk cell. Dibutyryl cyclic AMP, cyclic GMP and cyclic AMP disrupt slugs of Polysphondylium pallidum, while species of Dictyostelium are disrupted by only cyclic AMP. The multicellular stage of P. violaceum is unaffected by high concentrations of exogenous cyclic nucleotides. Cell organization of Acytostelium ellipticum, a species with an acellular stalk, was disrupted by cyclic AMP, but no stalk cells were formed; only spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号