首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onconase is an amphibian protein that is now in Phase III clinical trials as a cancer chemotherapeutic. Human pancreatic ribonuclease (RNase 1) is homologous to Onconase but is not cytotoxic. Here, ERDD RNase 1, which is the L86E/N88R/G89D/R91D variant of RNase 1, is shown to have conformational stability and ribonucleolytic activity similar to that of the wild-type enzyme but > 10(3)-fold less affinity for the endogenous cytosolic ribonuclease inhibitor protein. Most significantly, ERDD RNase 1 is toxic to human leukemia cells. The addition of a non-native disulfide bond to ERDD RNase 1 not only increases the conformational stability of the enzyme but also increases its cytotoxicity such that its IC(50) value is only 8-fold greater than that of Onconase. Thus, only a few amino acid substitutions are necessary to make a human protein toxic to human cancer cells. This finding has significant implications for human cancer chemotherapy.  相似文献   

2.
Ribonuclease (RNase) A can be endowed with cytotoxic activity by enabling it to evade the cytosolic ribonuclease inhibitor protein (RI). Enhancing its conformational stability can increase further its cytotoxicity. Herein, the A4C/K41R/G88R/V118C variant of RNase A was created to integrate four individual changes that greatly decrease RI affinity (K41R/G88R) and increase conformational stability (A4C/V118C). Yet, the variant suffers a decrease in ribonucleolytic activity and is only as potent a cytotoxin as its precursors. Thus, individual changes that increase cytotoxicity can have offsetting consequences. Overall, cytotoxicity correlates well with the maintenance of ribonucleolytic activity in the presence of RI. The parameter (k(cat)/K(m))(cyto), which reports on the ability of a ribonuclease to manifest its ribonucleolytic activity in the cytosol, is especially useful in predicting the cytotoxicity of an RNase A variant.  相似文献   

3.
Onconase(ONC) is an amphibian ribonuclease that is in clinical trials as a cancer chemotherapeutic agent. ONC is a homolog of ribonuclease A (RNase A). RNase A can be made toxic to cancer cells by replacing Gly(88) with an arginine residue, thereby enabling the enzyme to evade the endogenous cytosolic ribonuclease inhibitor protein (RI). Unlike ONC, RNase A contains a KFERQ sequence (residues 7-11), which signals for lysosomal degradation. Here, substitution of Arg(10) of the KFERQ sequence has no effect on either the cytotoxicity of G88R RNase A or its affinity for RI. In contrast, K7A/G88R RNase A is nearly 10-fold more cytotoxic than G88R RNase A and has more than 10-fold less affinity for RI. Up-regulation of the KFERQ-mediated lysosomal degradation pathway has no effect on the cytotoxicity of these ribonucleases. Thus, KFERQ-mediated degradation does not limit the cytotoxicity of RNase A variants. Moreover, only two amino acid substitutions (K7A and G88R) are shown to endow RNase A with cytotoxic activity that is nearly equal to that of ONC.  相似文献   

4.
Onconase((R)) (ONC) is a homolog of ribonuclease A (RNase A) that has unusually high conformational stability and is toxic to human cancer cells in vitro and in vivo. ONC and its amphibian homologs have a C-terminal disulfide bond, which is absent in RNase A. Replacing this cystine with a pair of alanine residues greatly decreases the conformational stability of ONC. In addition, the C87A/C104A variant is 10-fold less toxic to human leukemia cells. These data indicate that the synapomorphic disulfide bond of ONC is an important determinant of its cytotoxicity.  相似文献   

5.
A ribonuclease A variant with low catalytic activity but high cytotoxicity   总被引:5,自引:0,他引:5  
Onconase, a homolog of ribonuclease A (RNase A) with low ribonucleolytic activity, is cytotoxic and has efficacy as a cancer chemotherapeutic. Here variants of RNase A were used to probe the interplay between ribonucleolytic activity and evasion of the cytosolic ribonuclease inhibitor protein (RI) in the cytotoxicity of ribonucleases. K41R/G88R RNase A is a less active catalyst than G88R RNase A but, surprisingly, is more cytotoxic. Like Onconase, the K41R/G88R variant has a low affinity for RI, which apparently compensates for its low ribonucleolytic activity. In contrast, K41A/G88R RNase A, which has the same affinity for RI as does the K41R/G88R variant, is not cytotoxic. The nontoxic K41A/G88R variant is a much less active catalyst than is the toxic K41R/G88R variant. These data indicate that maintaining sufficient ribonucleolytic activity in the presence of RI is a requirement for a homolog or variant of RNase A to be cytotoxic. This principle can guide the design of new chemotherapeutics based on homologs and variants of RNase A.  相似文献   

6.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

7.
Fusion to cationic peptides, such as nonaarginine (R(9)), provides a means to deliver molecular cargo into mammalian cells. Here, we provide a thorough analysis of the effect of an R(9) tag on the attributes of a model protein: bovine pancreatic ribonuclease (RNase A). The R(9) tag diminishes the conformational stability of RNase A (DeltaT(m)=-8 degrees C in phosphate-buffered saline). This effect is nearly mitigated by the addition of salt. The tag does not compromise the enzymatic activity of RNase A. An R(9) tag facilitates the purification of RNase A by cation-exchange chromatography and enables the adsorption of RNase A on glass slides and silica resin with the retention of enzymatic activity. The tag can be removed precisely and completely by treatment with carboxypeptidase B. Finally, the R(9) tag increases both the cellular uptake of RNase A and the cytotoxicity of G88R RNase A, a variant that evades the cytosolic ribonuclease inhibitor protein. Thus, we conclude that polyarginine is a versatile protein fusion tag.  相似文献   

8.
Ruoppolo M  Vinci F  Klink TA  Raines RT  Marino G 《Biochemistry》2000,39(39):12033-12042
The eight cysteine residues of ribonuclease A form four disulfide bonds in the native protein. We have analyzed the folding of three double RNase A mutants (C65A/C72A, C58A/C110A, and C26A/C84A, lacking the C65-C72, C58-C110, and C26-C84 disulfide bonds, respectively) and two single mutants (C110A and C26A), in which a single cysteine is replaced with an alanine and the paired cysteine is present in the reduced form. The folding of these mutants was carried out in the presence of oxidized and reduced glutathione, which constitute the main redox agents present within the ER. The use of mass spectrometry in the analysis of the folding processes allowed us (i) to follow the formation of intermediates and thus the pathway of folding of the RNase A mutants, (ii) to quantitate the intermediates that formed, and (iii) to compare the rates of formation of intermediates. By comparison of the folding kinetics of the mutants with that of wild-type RNase A, the contribution of each disulfide bond to the folding process has been evaluated. In particular, we have found that the folding of the C65A/C72A mutant occurs on the same time scale as that of the wild-type protein, thus suggesting that the removal of the C65-C72 disulfide bond has no effect on the kinetics of RNase A folding. Conversely, the C58A/C110A and C26A/C84A mutants fold much more slowly than the wild-type protein. The removal of the C58-C110 and C26-C84 disulfide bonds has a dramatic effect on the kinetics of RNase A folding. Results described in this paper provide specific information about conformational folding events in the regions involving the mutated cysteine residues, thus contributing to a better understanding of the complex mechanism of oxidative folding.  相似文献   

9.
Onconase (ONC), an amphibian member of the bovine pancreatic ribonuclease A (RNase A) superfamily, is in phase III clinical trials as a treatment for malignant mesothelioma. RNase A is a far more efficient catalyst of RNA cleavage than ONC but is not cytotoxic. The innate ability of ONC to evade the cytosolic ribonuclease inhibitor protein (RI) is likely to be a primary reason for its cytotoxicity. In contrast, the non-covalent interaction between RNase A and RI is one of the strongest known, with the RI.RNase A complex having a K(d) value in the femtomolar range. Here, we report on the use of the fast atomic density evaluation (FADE) algorithm to identify regions in the molecular interface of the RI.RNase A complex that exhibit a high degree of geometric complementarity. Guided by these "knobs" and "holes", we designed variants of RNase A that evade RI. The D38R/R39D/N67R/G88R substitution increased the K(d) value of the pRI.RNase A complex by 20 x 10(6)-fold (to 1.4 microM) with little change to catalytic activity or conformational stability. This and two related variants of RNase A were more toxic to human cancer cells than was ONC. Notably, these cytotoxic variants exerted their toxic activity on cancer cells selectively, and more selectively than did ONC. Substitutions that further diminish affinity for RI (which has a cytosolic concentration of 4 microM) are unlikely to produce a substantial increase in cytotoxic activity. These results demonstrate the utility of the FADE algorithm in the examination of protein-protein interfaces and represent a landmark towards the goal of developing chemotherapeutics based on mammalian ribonucleases.  相似文献   

10.
Variants of bovine pancreatic ribonuclease (RNase A) engineered to evade the endogenous ribonuclease inhibitor protein (RI) are toxic to human cancer cells. Increasing the basicity of these variants facilitates their entry into the cytosol and thus increases their cytotoxicity. The installation of additional positive charge also has the deleterious consequence of decreasing ribonucleolytic activity or conformational stability. Here, we report that the same benefit can be availed by co-treating cells with a cationic dendrimer. We find that adding the generation 2 poly(amidoamine) dendrimer in trans increases the cytotoxicity of RI-evasive RNase A variants without decreasing their activity or stability. The increased cytotoxicity is not due to increased RI-evasion or cellular internalization, but likely results from improved translocation into the cytosol after endocytosis. These data indicate that co-treatment with highly cationic molecules could enhance the efficacy of ribonucleases as chemotherapeutic agents.  相似文献   

11.
The equilibrium stability and conformational unfolding kinetics of the [C40A, C95A] and [C65S, C72S] mutants of bovine pancreatic ribonuclease A (RNase A) have been studied. These mutants are analogues of two nativelike intermediates, des[40-95] and des[65-72], whose formation is rate-limiting for oxidative folding and reductive unfolding at 25 degrees C and pH 8.0. Upon addition of guanidine hydrochloride, both mutants exhibit a fast conformational unfolding phase when monitored by absorbance and fluorescence, as well as a slow phase detected only by fluorescence which corresponds to the isomerizations of Pro93 and Pro114. The amplitudes of the slow phase indicate that the two prolines, Pro93 and Pro114, are fully cis in the folded state of the mutants and furthermore that the 40-95 disulfide bond is not responsible for the quenching of Tyr92 fluorescence observed in the slow unfolding phase, contrary to an earlier proposal [Rehage, A., and Schmid, F. X. (1982) Biochemistry 21, 1499-1505]. The ratio of the kinetic unfolding m value to the equilibrium m value indicates that the transition state for conformational unfolding in the mutants exposes little solvent-accessible area, as in the wild-type protein, indicating that the unfolding pathway is not dramatically altered by the reduction of the 40-95 or 65-72 disulfide bond. The stabilities of the folded mutants are compared to that of wild-type RNase A. These stabilities indicate that the reduction of des[40-95] to the 2S species is rate-limited by global conformational unfolding, whereas that of des[65-72] is rate-limited by local conformational unfolding. The isomerization of Pro93 may be rate-limiting for the reduction of the 40-95 disulfide bond in the native protein and in the des[65-72] intermediate.  相似文献   

12.
The folding of ribonuclease A (RNase A) has been extensively studied by characterizing the disulfide containing intermediates using different experimental conditions and analytical techniques. So far, some aspects still remain unclear such as the role of the loop 65-72 in the folding pathway. We have studied the oxidative folding of a RNase A derivative containing at position 67 the substitution Asn --> isoAsp where the local structure of the loop 65-72 has been modified keeping intact the C65-C72 disulfide bond. By comparing the folding behavior of this mutant to that of the wild-type protein, we found that the deamidation significantly decreases the folding rate and alters the folding pathway of RNase A. Results presented here shed light on the role of the 65-72 region in the folding process of RNase A and also clarifies the effect of the deamidation on the folding/unfolding processes. On a more general ground, this study represents the first characterization of the intermediates produced along the folding of a deamidated protein.  相似文献   

13.
Ribonuclease T1 has two disulfide bonds linking cysteine residues 2-10 and 6-103. We have prepared a derivative of ribonuclease T1 in which one disulfide bond is broken and the cysteine residues carboxymethylated, (2-10)-RCM-T1, and three derivatives in which both disulfides are broken and the cysteine residues reduced, R-T1, carboxamidomethylated, RCAM-T1, or carboxymethylated, RCM-T1. The RNA hydrolyzing activity of these proteins has been measured, and urea and thermal denaturation studies have been used to determine conformational stability. The activity, melting temperature, and conformational stability of the proteins are: ribonuclease T1 (100%, 59.3 degrees C, 10.2 kcal/mol), (2-10)-RCM-T1 (86%, 53.3 degrees C, 6.8 kcal/mol), R-T1 (53%, 27.2 degrees C, 3.0 kcal/mol), RCAM-T1 (43%, 21.2 degrees C, 1.5 kcal/mol), and RCM-T1 (35%, 16.6 degrees C, 0.9 kcal/mol). Thus, the conformational stability is decreased by 3.4 kcal/mol when one disulfide bond is broken and by 7.2-9.3 kcal/mol when both disulfide bonds are broken. It is quite remarkable that RNase T1 can fold and function with both disulfide bonds broken and the cysteine residues carboxymethylated. The large decrease in the stability is due mainly to an increase in the conformational entropy of the unfolded protein which results when the constraints of the disulfide bonds on the flexibility are removed. We propose a new equation for predicting the effect of a cross-link on the conformational entropy of a protein: delta Sconf = -2.1 - (3/2)R 1n n, where n is the number of residues between the side chains which are cross-linked. This equation gives much better agreement with experimental results than other forms of this equation which have been used previously.  相似文献   

14.
Shin HC  Narayan M  Song MC  Scheraga HA 《Biochemistry》2003,42(39):11514-11519
To assess the role of the [65-72] disulfide bond in the oxidative folding of RNase A, use has been made of [C65S, C72S], a three-disulfide-containing mutant of RNase A which regenerates from its two-disulfide precursor in an oxidation and conformational folding-coupled rate-determining step. The distribution of disulfide bonds in the one-disulfide-containing ensemble of this mutant has been characterized. In general, the disulfide-bond distribution in its 1S ensemble agrees relatively well with the corresponding distribution in wt-RNase A and with distributions based on calculations of loop entropy, except for the absence of the [65-72] disulfide bond. There is no bias (over the entropic influence) for the three native disulfide bonds, [26-84], [40-95], and [58-110]. Previous oxidative folding results for wt-RNase A indicated the predominance of the des [40-95] intermediate over des [65-72] after the rate-determining step in the regeneration process. Considering that there is no preferential distribution of disulfides in the 1S ensemble of [C65S, C72S], in contrast to the preferential population of the [65-72] disulfide bond in wt-RNase A, these results indicate a critical role for the [65-72] disulfide bond in the regeneration of wt-RNase A. Furthermore, analysis of the disulfide distribution of the 1S intermediates of [C65S, C72S] compared to that of wt-RNase A lends support for a physicochemical basis for the previously observed slow folding rate of this mutant, compared to its analogue (des [65-72]) of wt-RNase A.  相似文献   

15.
Onconase, a member of the pancreatic type ribonuclease family, is currently used as a chemotherapeutic agent for the treatment of different types of cancer. It is widely accepted that one of the properties that renders this enzyme cytotoxic is its ability to evade the cytosolic ribonuclease inhibitor (RI). In the present work, we produced and characterized an onconase variant that lacks the disulfide bond C30/C75. This variant mimics the stable unfolding intermediate des(30-75) produced in the reductive unfolding pathway of onconase. We found that the reduction of the C30/C75 disulfide bond does not significantly alter the cytotoxic properties of onconase, although the variant possesses a notably reduced conformational stability. Interestingly, both its catalytic activity and its ability to evade RI are comparable to wild-type onconase under mild reductive conditions in which the three disulfide containing intermediate des(30-75) is present. These results suggest that the C30/C75 disulfide bond could easily be reduced under physiological redox conditions.  相似文献   

16.
Ribonuclease (RNase) Sa3 is secreted by the Gram-positive bacterium Streptomyces aureofaciens. The enzyme catalyzes the cleavage of RNA on the 3' side of guanosine residues. Here, x-ray diffraction analysis was used to determine the three-dimensional structure of two distinct crystalline forms of RNase Sa3 to a resolution of 2.0 and 1.7 A. These two structures are similar to each other as well as to that of a homolog, RNase Sa. All of the key active-site residues of RNase Sa (Asn(42), Glu(44), Glu(57), Arg(72), and His(88)) are located in the putative active site of RNase Sa3. Also herein, RNase Sa3 is shown to be toxic to human erythroleukemia cells in culture. Like onconase, which is an amphibian ribonuclease in Phase III clinical trials as a cancer chemotherapeutic, RNase Sa3 is not inhibited by the cytosolic ribonuclease inhibitor protein. Thus, a prokaryotic ribonuclease can be toxic to mammalian cells.  相似文献   

17.
Ribonuclease A (RNase A) and the ribonuclease inhibitor protein (RI) form one of the tightest known protein-protein complexes. RNase A variants and homologues, such as G88R RNase A, that retain ribonucleolytic activity in the presence of RI are toxic to cancer cells. Herein, a new and facile assay is described for measuring the equilibrium dissociation constant (K(d)) and dissociation rate constant (k(d)) for complexes of RI and RNase A. This assay is based on the decrease in fluorescence intensity that occurs when a fluorescein-labeled RNase A binds to RI. To allow time for equilibration, the assay is most readily applied to those complexes with K(d) values in the nanomolar range or higher. Using this assay, the value of K(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be 0.55 +/- 0.03 nM. In addition, the value of K(d) was determined for the complex of RI with unlabeled G88R RNase A to be 0.57 +/- 0.05 nM by using a competition assay with fluorescein-labeled G88R RNase A. Finally, the value of k(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be (7.5 +/- 0.4) x 10(-3) s(-1) by monitoring the increase in fluorescence intensity upon dissociation. This assay can be used to characterize complexes of RI with a wide variety of RNase A variants and homologues, including those with cytotoxic activity.  相似文献   

18.
Johnson RJ  Lin SR  Raines RT 《The FEBS journal》2006,273(23):5457-5465
Translating proteases as inactive precursors, or zymogens, protects cells from the potentially lethal action of unregulated proteolytic activity. Here, we impose this strategy on bovine pancreatic ribonuclease (RNase A) by creating a zymogen in which quiescent ribonucleolytic activity is activated by the NS3 protease of the hepatitis C virus. Connecting the N-terminus and C-terminus of RNase A with a 14-residue linker was found to diminish its ribonucleolytic activity by both occluding an RNA substrate and dislocating active-site residues, which are devices used by natural zymogens. After cleavage of the linker by the NS3 protease, the ribonucleolytic activity of the RNase A zymogen increased 105-fold. Both before and after activation, the RNase A zymogen displayed high conformational stability and evasion of the endogenous ribonuclease inhibitor protein of the mammalian cytosol. Thus, the creation of ribonuclease zymogens provides a means to control ribonucleolytic activity and has the potential to provide a new class of antiviral chemotherapeutic agents.  相似文献   

19.
With the aim to distinguish between local and global conformational changes induced by trifluoroethanol in RNase A, spectroscopic and activity measurements in combination with proteolysis by unspecific proteases have been exploited for probing structural transitions of RNase A as a function of trifluoroethanol concentration. At > 30% (v/v) trifluoroethanol (pH 8.0; 25 degrees C), circular dichroism and fluorescence spectroscopy indicate a cooperative collapse of the tertiary structure of RNase A coinciding with the loss of its enzymatic activity. In contrast to the denaturation by guanidine hydrochloride, urea or temperature, the breakdown of the tertiary structure in trifluoroethanol is accompanied by an induction of secondary structure as detected by far-UV circular dichroism spectroscopy. Proteolysis with the nonspecific proteases subtilisin Carlsberg or proteinase K, both of which attack native RNase A at the Ala20-Ser21 peptide bond, yields refined information on conformational changes, particularly in the pretransition region. While trifluoroethanol at concentrations > 40% results in a strong increase of the rate of proteolysis and new primary cleavage sites (Tyr76-Ser77, Met79-Ser80) were identified, the rate of proteolysis at trifluoroethanol concentrations < 40% (v/v) is much smaller (up to two orders of magnitude) than that of the native RNase A. The proteolysis data point to a decreased flexibility in the surrounding of the Ala20-Ser21 peptide bond, which we attribute to subtle conformational changes of the ribonuclease A molecule. These changes, however, are too marginal to alter the overall catalytic and spectroscopic properties of ribonuclease A.  相似文献   

20.
Ribonuclease inhibitor as an intracellular sentry   总被引:3,自引:0,他引:3       下载免费PDF全文
Onconase® (ONC) is a homolog of RNase A that is in clinical trials as a cancer chemotherapeutic agent. The toxicity of ONC and RNase A variants relies on their ability to evade the cytosolic ribonuclease inhibitor protein (RI) and degrade cellular RNA. We find that these ribonucleases are more toxic for more rapidly growing cells. The enhanced cytotoxicity does not arise from variation in the endogenous level of RI, which is virtually constant. Overproduction of RI diminishes the potency of toxic RNase A variants, but has no effect on the cytotoxicity of ONC. Thus, RI constrains the cytotoxicity of RNase A. These data provide new insights for the development of an optimal ribonuclease-based cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号