首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monolayer cultures of the pancreas of the neonatal rat were maintained in TCM 199 medium, supplemented with 5.5 mM glucose, with or without 5 mM 3-amino-3-deoxyglucose, and perifused to examine the changes which occurred in the insulin secretory response during culture. On day 0, B cells showed a monophasic insulin secretion in response to 16.7 mM glucose, whereas in the presence of 200 nM 12-o-tetradecanoyl phorbol-13-acetate, 40 microM lysophosphatidylcholine, 10 microM forskolin or 1 mM 3-isobutyl-1-methylxanthine, the same dose of glucose stimulated insulin secretion in a biphasic fashion. Under culture conditions without 3-amino-3-deoxyglucose, the response to glucose totally disappeared after 7 days, and that to 10 mM of either leucine or 2-ketoisocaproate was as low as that of day 0. In contrast, B cells that had been cultured for 7 days in medium with 3-amino-3-deoxyglucose showed an adult-like biphasic pattern in response to glucose. When stimulated by glucose at a linear gradient concentration running from 0 to 20 mM, the B cells responded to increasing concentrations of glucose in a dose-dependent fashion. Further, the response of cAMP to glucose was increased by adding forskolin or 3-isobutyl-1-methylxanthine, which also enhanced the secretion of insulin under either a step-wise or slow-rise stimulation with glucose. The effect of 12-o-tetradecanoyl phorbol-13-acetate was also outstanding. Likewise, the addition of either leucine or 2-keptoisocaproate induced a striking increase in the secondary phase secretion as well as promoting the rates of glutamine oxidation within the cells. In conclusion, it is suggested that the high response to a wider variety of stimuli may represent the reaction of neonatal B cells to the cultural milieu rather than a process of physiological development, and these effects exhibited by 3-amino-3-deoxyglucose would be related to a change in the constituents of glycoproteins in the cells.  相似文献   

2.
Acute exposure to agents that activate protein kinase C is known to cause insulin release both from the fetal and adult pancreas. These experiments were designed to test the effect of chronic exposure of the human fetal pancreas to such agents. Nine to twelve days after commencement of culture of this tissue, exposed to 0.165-1.3 microM 12-O-tetradecanoylphorbol-13-acetate, insulin secretion was reduced and remained less than that for controls thereafter. Exchange of the test for the control medium resulted in partial recovery of insulin release. Insulin content of the treated explants was also significantly reduced. The insulinogenic response to an acute challenge of either 20 mM glucose or 10 mM theophylline/2.8 mM glucose at the end of the culture was no different from that for controls.  相似文献   

3.
We examined the effects of a pentadecapeptide having the 104-118 aminoacid sequence of islet neogenesis-associated protein (INGAP-PP) on insulin secretion, and the morphological characteristics of adult and neonatal pancreatic rat islets cultured in RPMI and 10 mM glucose for 4 days, with or without different INGAP-PP concentrations (0.1-100 mug/ml). A scrambled 15 aminoacid peptide was used as control for the specificity of INGAP-PP effect. Cultured neonatal and adult islets released insulin in response to glucose (2.8-16.7 mM) in a dose-dependent manner, and to leucine and arginine (10 mM). In all cases, the response was greater in adult islets. INGAP-PP added to the culture medium significantly enhanced glucose- and aminoacid-induced insulin release in both adult and newborn rats; however, no changes were observed with the scrambled peptide. Similar results were obtained incubating freshly isolated adult rat islets with INGAP-PP. Whereas INGAP-PP did not induce significant changes in islet survival rate or proportion/number of islet cells, it increased significantly beta-cell size. This first demonstration of the enhancing effect of INGAP-PP on the beta-cell secretory response of adult and newborn islets opens a new avenue to study its production mechanism and potential use to increase the secretory capacity of endogenous islets in intact animals or of islets preserved for future transplants.  相似文献   

4.
Effects of age and glucose levels on insulin secretion and synthesis were studied in the perfused pancreas of young (2-month-old) and older (10-month-old) female Wistar rats. Insulin secretion induced by 16.7 mM glucose showed a triphasic pattern: an early spike and fall (first phase, 0-6 min), followed by a sustained gradual increase (second phase, 7-120 min) and a gradual decreased release thereafter (third phase, 121-360 min) during the perfusion period of 360 min. First and second phase insulin secretion, but not third phase, were lower in older rats than in young rats. Insulin synthesis in old rat pancreas perfused with 16.7 nM glucose for 360 min was much greater than that of young rats. Second phase insulin secretion was restored to comparable levels by 28 mM glucose in older rats. Repeated pulses of 28 mM glucose potentiated subsequent insulin secretion in young rats, but not in older rats. These findings provide further evidence that sensitivity to glucose in pancreatic B cells is altered by aging.  相似文献   

5.
Bioartificial pancreatic constructs based on immunoisolated, insulin-secreting cells have the potential for providing effective, long-term treatment of type I (insulin-dependent) diabetes. Use of insulinoma cells, which can be amplified in culture, relaxes the tissue availability limitation that exists with normal pancreatic islet transplantations. We have adopted mouse insulinoma betaTC3 cells entrapped in calcium alginate/poly-L-lysine/alginate (APA) beads as our model system for a bioartificial pancreas, and we have characterized the effects of long-term propagation and of glucose concentration step changes on the bioenergetic status and on the metabolic and secretory activities of the entrapped cells. Cell bioenergetics were evaluated nonivasively by phosphorus-31 nuclear magnetic resonance ((31)P NMR) spectroscopy, and metabolic and secretory parameters by assaying cell culture medium. Data indicate that net cell growth occurred between days 3 and 10 of the experiment, resulting in an approximate doubling of the overall metabolic and secretory rates and of the intracellular metabolite levels. Concurrently, a reorganization of cell distribution within the beads was observed. Following this growth period, the measured metabolic and secretory parameters remained constant with time. During glucose step changes in the perfusion medium from a high concentration of 12 to 15 mM to 0 mM for 4.5 h to the same high glucose concentration, the oxygen consumption rate was not affected, whereas insulin secretion was always glucose-responsive. Intracellular nucleotide triphosphates did not change during 0 mM glucose episodes performed early in culture history, but they declined by 20% during episodes performed later in the experiment. It is concluded that the system of APA-entrapped betaTC3 cells exhibits several of the desirable characteristics of a bioartificial pancreas device, and that a correlation between ATP and the rate of insulin secretion from betaTC3 cells exists for only a domain of culture conditions. These findings have significant implications in tissue engineering a long-term functional bioartificial endocrine pancreas, in developing noninvasive methods for assessing construct function postimplantation, and in the biochemical processes associated with insulin secretion.  相似文献   

6.
Insulin release in the perfused isolated rat pancreas was measured after stimulation with 16.5 mM glucose with and without somatostatin (cycle form, 100 ng/ml) in the medium. A complete blockage of the typical biphasic pattern of insulin release ocurred with somatostatin in the medium. Such blockage was abolished when cAMP (2.5 mM) and a 0.5 ml solution of glucagon (1 mg/ml) were continuously perfused for 20-minute periods and for 30-second periods correspondently. It did not take place when glibenclamide (HB-419) was perfused for a 20-minute period at a rate of 10 mug/ml. The results suggest that the adenylcyclase dependent mechanisms of glucose-induced insulin release are involved in the inhibition of the glucose-induced insulin secretion by somatostatin.  相似文献   

7.
Insulin secretion from pieces of pancreas of rabbits aged 6 weeks or 1 day, or of 24-day foetuses was studied in vitro in response to glucose, glucagon and theophylline. Glucose did not stimulate insulin release from foetal pancreas but was effective postnatally. Glucagon in medium containing 3.0 mg glucose/ml stimulated insulin secretion equally at each stage of development. Theophylline in medium containing 0.6 or 3.0 mg glucose/ml stimulated insulin secretion from foetal pancreas but was effective on postnatal pancreas only in the presence of 3.0 mg glucose/ml. Glucose potentiated the action of theophylline on the foetal β cell and theophylline potentiated the action of glucose on the adult β cell.  相似文献   

8.
Exposure of rat pancreatic islets to 20 mM leucine for 24 h reduced insulin release in response to glucose (16.7 and 22.2 mM). Insulin release was normal when the same islets were stimulated with leucine (40 mM) or glyburide (1 microM). To investigate the mechanisms responsible for the different effect of these secretagogues, we studied several steps of glucose-induced insulin secretion. Glucose utilization and oxidation rates in leucine-precultured islets were similar to those of control islets. Also, the ATP-sensitive K(+) channel-independent pathway of glucose-stimulated insulin release, studied in the presence of 30 mM K(+) and 250 microM diazoxide, was normal. In contrast, the ATP-to-ADP ratio after stimulation with 22.2 mM glucose was reduced in leucine-exposed islets with respect to control islets. The decrease of the ATP-to-ADP ratio was due to an increase of ADP levels. In conclusion, prolonged exposure of pancreatic islets to high leucine levels selectively impairs glucose-induced insulin release. This secretory abnormality is associated with (and might be due to) a reduced ATP-to-ADP ratio. The abnormal plasma amino acid levels often present in obesity and diabetes may, therefore, affect pancreatic islet insulin secretion in these patients.  相似文献   

9.
The effect of physical training on insulin and glucagon release in perfused rat pancreas was examined in the spontaneously exercised group running in a wheel cage an average of 1.4 km/day for 3 weeks and in the sedentary control group kept in the cage whose rotatory wheel was fixed on purpose. Pancreatic immunoreactive insulin (IRI) responses to glucose and arginine were reduced by 28% and 47.8% respectively in trained rats compared with untrained rats, while IRI content of the pancreas was similar in these two groups. The demonstrated decrease in insulin secretion of the beta-cell of the trained rats, in response to the glucose and arginine stimulations, may be functional in nature. On the other hand, neither pancreatic glucagon immunoreactivity (GI) response to glucose and arginine nor GI content of the pancreas was modified by exercise training. These results demonstrate that exercise training reduces IRI responses to glucose as well as to arginine stimulations, but does not modify any secretory response of pancreatic GI.  相似文献   

10.
The author studied the effect of insulin on CCK8-stimulated secretion by the pancreas. CCK8 (0.6 nmol.kg-1) was administered to normal anaesthetized rats 30 min after the intravenous injection of insulin (10 U.kg-1), glucose (2 g.kg-1) or NaCl (controls). Pancreatic juice was collected from the intubated common bile duct. In rats given exogenous insulin, there were no statistically significant differences in total protein, amylase and trypsinogen output after CCK8 compared with the controls. In rats in which endogenous insulin secretion was stimulated with glucose, the amylase response to CCK8 was not significantly different from the control animals, but the trypsinogen response was significantly lower. The results show that insulin, in some still unknown manner, inhibits the trypsinogen secretory response to CCK8. In addition, they confirm data claiming that the synthesis and secretion of pancreatic amylase require a given critical ratio of insulin to glucose, or of insulin to the factor stimulating pancreatic secretion.  相似文献   

11.
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.  相似文献   

12.
The insulin response of 3-day old neonatal rat islets was evaluated following a 1 h incubation with glucose alone and in the presence of 30 nM sulfated cholecystokinin octapeptide (CCK) and/or 20 microM carbachol (CCh). Insulin secretion was found to be incrementally increased from the lowest glucose concentration and enhanced several fold in the presence of CCK and/or CCh. In combination, CCK and CCh increased glucose-stimulated insulin secretion by an amount equivalent to the sum of their individual increases. The presence of either CCK alone or CCK plus CCh increased phosphoinositide hydrolysis by the same relative amount that they increased insulin secretion when compared to 8.3 mM glucose. Glucose-stimulated insulin secretion was totally inhibited when calcium was omitted from the incubation buffer; this effect was partially negated by CCK alone and more so by CCK combined with CCh. Insulin secretion in response to 8.3 mM glucose alone was unchanged when calcium in the incubation buffer was increased from 1 to 5 mM; however, the insulin response to 16.7 mM glucose alone and 8.3 mM glucose in the presence of CCK and/or CCh was increased under this condition. Thus, we have shown that, even at 3 days postpartum, insulin secretion from isolated islets is a complex response capable of being molded by several secretagogues at once and ultimately determined by interplay of different signaling systems activated.  相似文献   

13.
There are a variety of different tissue preparations which have been used to study secretion from the endocrine pancreas and there are considerable differences in the results obtained from these. The purpose of this study was to compare several preparations in one laboratory using the same rats, buffers, and radioimmunoassays. The preparations included the isolated perfused rat pancreas, fresh isolated intact islets and dispersed cells, and cultured islets and cells. Insulin release from the perfused rat pancreas at 2.8 mM glucose was so low that it could not be measured, such that over a 90-min time period the amount of insulin released was less than 0.004% of pancreatic insulin content. In contrast, islets in static incubation appear to release 2.0% of their stored content and dispersed cells appear to release 2.6% of their content. Samples were taken at early time points during incubations of fresh islets and dispersed cells, and it was found that almost all of the insulin found at the end of a 90-min incubation period was present during the first 5 min. It is therefore suspected that the true secretory rate of insulin at a low glucose concentration is far lower than had been generally appreciated. Glucagon release patterns showed similarities in that with isolated islets and dispersed cells a disproportionate amount of glucagon release was found during a 0- to 30-min incubation period when compared with the 30- to 90-min period. In summary, artifacts have been identified in some of the in vitro systems used for the study of endocrine pancreatic secretion and these deserve greater recognition.  相似文献   

14.
15.
The bioartificial pancreas, in which transplanted pancreatic tissue or isolated cells are cultured on a hollow fiber membrane, is an attractive approach to restore physiologic insulin delivery in the treatment of diabetes. Insulin response in prototype devices has been unacceptable due to the large mass transport limitations associated with the membrane and the surrounding shell region. Although available theoretical analyses provide some insight into the combined effects of transport and reaction in the bioartificial pancreas, they cannot quantitatively account for the effects of convective recirculation flow, complex intrinsic insulin secretory kinetics, and non-uniform distribution of pancreatic cells. We have developed a detailed model for glucose and insulin transport and insulin secretion in the hollow fiber bioartificial pancreas based on the solution of the mass and momentum conservation equations describing flow and transport in the lumen, matrix, and shell. Model predictions are in good agreement with literature data obtained in a hollow fiber device with minimal radial convective flow. Although no quantitative data are available for a device with significant radial convection, model simulations demonstrate that convective recirculation flow can dramatically improve insulin response, allowing the device to accurately capture the bi-phasic insulin secretion characteristic of the normal physiologic response. Results provide fundamental insights into the coupling between kinetics and transport in the hollow fiber system and a rational basis for the design of clinical devices.  相似文献   

16.
Monolayer cultures derived from neonatal hamster or rat pancreas by two different epithelioid cell-enriching gravity sedimentation procedures varied in ability to maintain uniform levels of insulin secretion with increased culture age. Rat pancreatic cultures were superior in this respect to identically derived hamster preparations, depending on the preparative procedure employed. Quantitative differences in the temporal pattern of insulin secretion by different rat pancreatic culture preparations were ascribed to plating cell density and consequent terminal cell density as a function of preparative procedure such that reduced densities favored sustained secretory levels. These findings suggest the importance of tissue species and preparative procedure in deriving pancreatic monolayer cultures capable of sustained levels of insulin secretion with age.  相似文献   

17.
Glucose-stimulated insulin release from rat pancreas is known to be blunted by aging. In the present study, we examined the effect of aging on insulin release induced by various secretagogues using the isolated perfused pancreas of female rats. Insulin release from the perfused pancreas in response to 16.7 mM glucose in 8-month-old rats (older rats) was much less than that in 2-month-old rats (young rats). The first phase of insulin release after glucose stimulation was attenuated in older rats. The addition of 0.1 mM 3-isobutyl-1-methylxanthine (IBMX) potentiated glucose-induced insulin secretion in both groups of rats. However, the second phase of insulin secretion in older rats was lower than that in younger rats. The phorbol ester 12-O-tetradecanoyl phorbol ester (TPA, 200 nM) enhanced both the first and the second phases of insulin release induced by glucose in both groups of rats. The amount of first phase insulin release induced by TPA with glucose in young rats was greater than that in older rats, whereas the second phase of insulin release was similar in both groups of rats. On the other hand, tolbutamide (200 uM) similarly stimulated the first phase of insulin release in both age groups of rat. In addition, the amount of cumulative insulin secretion induced by tolbutamide during the second phase was slightly but significantly greater in older rats than in young controls. Insulin content in the pancreas was significantly greater in older rats than in young rats and increased after the stimulation with TPA and tolbutamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An adipokine resistin, a small cysteine-rich protein, is one of the major risk factors of insulin resistance. In the present study, transiently resistin-expressing mice using adenovirus method showed an impaired glucose tolerance due to insulin resistance. We found that resistin-expressing mice exhibited impaired insulin secretory response to glucose. In addition, in vitro treatment with resistin for 1 day induced insulin resistance in pancreatic islets and impaired glucose-stimulated insulin secretion by elevating insulin release at basal glucose (2.8 mM) and suppressing insulin release at stimulatory glucose (8.3 mM). In addition, resistin inhibited insulin-induced phosphorylation of Akt in islets as well as other insulin target organs. Furthermore, resistin induced SOCS-3 expression in beta-cells. In conclusion, resistin induces insulin resistance in islet beta-cells at least partly via induction of SOCS-3 expression and reduction of Akt phosphorylation and impairs glucose-induced insulin secretion.  相似文献   

19.
Pancreatic islet cell vacuolization, hyperglycemia, and glucose intolerance develop in rats after oral administration of cyproheptadine (CPH). In order to determine whether these effects were associated with abnormal insulin secretion, pancreas segments from CPH-treated and control rats were compared for their ability to secrete insulin in response to several stimuli. Oral administration of CPH (45 mg/kg/day) to rats for 1 or 8 days inhibited glucose-mediated insulin secretion from pancreas segments obtained 3 and 24 hr after the last dose of the drug. Insulin secretion had returned to normal by 48 hr after drug administration. Intraperitoneal administration of the drug was less effective than oral administration in inhibiting in vitro insulin secretion. Other stimuli for insulin secretion (tolbutamide, glucagon, L-leucine, and dibutyryl 3',5'cyclic AMP), like glucose, were incapable of releasing normal amounts of insulin from pancreas segments of CPH-treated rats. CPH and a metabolite, desmethyl-CPH, inhibited glucose-stimulated insulin secretion when added in vitro to pancreas segments from control rats. This suggests that the inhibition of insulin secretion in pancreas segments taken from animals treated with CPH could be due, at least in part, to the presence of drug and its metabolite in the tissue. A previously observed reduction in the pancreatic content of insulin in CPH-treated rats may also contribute to the abnormal insulin release in animals given the drug.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号