首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human kidney L-arginine:glycine amidinotransferase (transamidinase) has been purified to a homogeneous state as defined by native and sodium dodecyl sulfate gel electrophoresis and by ultracentrifugation (sedimentation equilibrium) experiments. The four steps in the isolation procedure were chromatography with DEAE-cellulose, gel filtration with Sephadex G-150, chromatography with phenyl Sepharose, and high-pressure liquid chromatography with hydroxylapatite. The final product represented a 90-fold purification of the enzyme. Human kidney transamidinase is a dimer with a molecular mass of 89,000 Da and subunit masses of 44,000 Da. The Km for arginine and glycine were both 2.5 mM and the Vmax was 0.5 mumol ornithine/min/mg protein. The ultraviolet absorption spectrum, specific activity, and isoelectric points were determined for human kidney transamidinase. Multiple forms of the enzyme were obtained by isoelectric focusing. Human kidney transamidinase cross-reacted with polyclonal antibodies raised to rat kidney transamidinase. All of the properties of human kidney transamidinase that we have examined were similar to those of rat kidney transamidinase. A close evolutionary relationship between the rat and human kidney transamidinase is suggested.  相似文献   

2.
D-Arginine dehydrogenase activity was discovered in Pseudomonas aeruginosa. This enzyme was inducible by its substrate, D-arginine, as well as by its product, 2-ketoarginine, but not by L-arginine. The enzyme activity was measured in vitro, in the presence of artificial electron acceptore (phenazine methosulphate and iodonitrotetrazolium chloride). 2-ketoarginine was catabolized further to 4-guanidinobutyraldehyde, 4-guanidinobutyrate and 4-aminobutyrate. Two enzymes involved, 4-guanidinobutyraldehyde dehydrogenase and guanidinobutyrase, were inducible by 2-ketoarginine; the latter enzyme was also strongly induced by 4-guanidinobutyrate. An arginine racemase activity was detected by an invivo test. E-Arginine had the potential to be catabolized via the D-arginine dehydrogenase pathway and, after racemization, via the three L-arginine catabolic pathyways previously demonstrated in P. aeruginosa. In mutants blocked in the L-arginine succinyltransferase pathway, but no in the wild-type, L-arginine was channelled partially into the D-arginine dehydrogenase pathway. Mutations in the kauB locus abolished growth of P. aeruginosa on 2-ketoarginine, agmatine and putrescine, and led to loss of 4-guanidinobutyraldehyde dehydrogenase and 4-aminobutyaldehyde dehydrogenase activites. Thus, these two activites appear to be due to one enzyme in P. aeruginosa. The kauB locus was mapped on the chromosome between lysA and argB and was not linked to known genes involved in the three L-arginine catabolic pathways. The existence of four arginine catabolic pathways illustrates the metabolic versatility of P. aeruginosa.  相似文献   

3.
Pseudomonas syringae pv. phaseolicola is the causal agent of the "halo blight" disease of beans. A key component in the development of the disease is a nonhost-specific toxin, Ndelta-(N'-sulphodiaminophosphinyl)-ornithyl-alanyl-homoarginine, known as phaseolotoxin. The homoarginine residue in this molecule has been suggested to be the product of L-arginine:lysine amidinotransferase activity, previously detected in extracts of P. syringae pv. phaseolicola grown under conditions of phaseolotoxin production. We report the isolation and characterization of an amidinotransferase gene (amtA) from P. syringae pv. phaseolicola coding for a polypeptide of 362 residues (41.36 kDa) and showing approximately 40% sequence similarity to L-arginine:inosamine-phosphate amidinotransferase from three species of Streptomyces spp. and 50.4% with an L-arginine:glycine amidinotransferase from human mitochondria. The cysteine, histidine, and aspartic acid residues involved in substrate binding are conserved. Furthermore, expression of the amtA and argK genes and phaseolotoxin production occurs at 18 degrees C but not at 28 degrees C. An amidinotransferase insertion mutant was obtained that lost the capacity to synthesize homoarginine and phaseolotoxin. These results show that the amtA gene isolated is responsible for the amidinotransferase activity detected previously and that phaseolotoxin production depends upon the activity of this gene.  相似文献   

4.
L-Arginine iminohydrolase (arginine deiminase, ADI) from Tetrahymena thermophila was purified approx. 75-fold by means of gel permeation chromatography. The Km of the purified enzyme for L-arginine was 412 +/- 25 microM and L-ornithine inhibited the reaction competitively with a Ki of 985 +/- 105 microM. D-Ornithine was a weak inhibitor with a Ki of greater than 10mM. The polyamines putrescine and spermidine inhibited ADI incompetitively with a Kii of 2.8mM for putrescine and 4.3mM for spermidine. Since the concentrations required for inhibition were within the range of the normal intracellular polyamine concentrations in Tetrahymena (maximally 14mM putrescine and 4mM spermidine), it is suggested that the polyamine effects on ADI are of regulatory nature. Thus, polyamine biosynthesis in Tetrahymena thermophila is regulated not only on the level of ornithine decarboxylase activity, but also on an earlier step, the supply of ODC with substrates.  相似文献   

5.
Some Properties of the Arginine Decarboxylase in Vicia faba Leaves   总被引:1,自引:0,他引:1  
Growth of Vicia faba seedlings is accompanied by a rapid increasein arginine decarboxylase (EC 4.1.1.19 [EC] ) in the leaves and epicotyl.Increased enzyme activity was observed under saline conditionsin the presence of NaCl and with osmotic stress by mannitol.The partially purified enzyme (about 86-fold) readily decarboxylatedL-arginine, while D-arginine, L-homoarginine, L-ornithine andL-lysine were decarboxylated very slowly, and L-citrulline andL-glutamic acid were not decarboxylated. The Km value was 5.8?10–4M for L-arginine. The optimal pH and temperature for activitywere 8.5 and 45?C, respectively. p-Chloromercuribenzoate andN-ethylmaleimide were effective inhibitors of the enzyme. Inhibitionby spermidine, putrescine and agmatine suggested a possiblefeed-back mechanism in the pathway of polyamine biosynthesis. (Received October 11, 1983; Accepted February 24, 1984)  相似文献   

6.
S-Adenosylmethionine decarboxylase (EC 4.1.1.19) was purified to homogeneity from the cytosol of soybean (Glycine max) axes by ammonium sulfate fractionation, DEAE-Sepharose and methylglyoxalbis(guanylhydrazone)-Sepharose 6B chromatographies. The enzyme was free from diamine oxidase activity. The molecular weight of the enzyme estimated by gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis was 66,000. The Km value for S-adenosylmethionine was 0.26 mM. The optimum pH and temperature were 7.5 and 40 degrees C. Neither putrescine nor Mg2+ affected the enzyme activity, but the enzyme was inhibited by spermidine, spermine, methylglyoxalbis(guanylhydrazone), sodium borohydride and phenylhydrazine. Agmatine was a novel inhibitor which inhibited S-adenosylmethionine decarboxylase and arginine decarboxylase, preventing the accumulation of decarboxylated S-adenosylmethionine and putrescine, respectively.  相似文献   

7.
K M Yao  W F Fong    S F Ng 《The Biochemical journal》1984,222(3):679-684
The putrescine-biosynthesis pathway in Tetrahymena thermophila was delineated by studying crude extracts prepared from exponentially growing cultures. A pyridoxal phosphate-stimulated ornithine decarboxylase activity competitively inhibited by putrescine was detected. CO2 was also liberated from L-arginine, but analyses by t.l.c. and enzyme studies suggested that the activity was not due to arginine decarboxylase, nor could enzyme activities converting agmatine into putrescine be detected. We conclude that the decarboxylation of L-ornithine is probably the only major route for putrescine biosynthesis in this organism during exponential growth.  相似文献   

8.
Crystalline L-arginine deiminase of Pseudomonas putida was prepared by the following steps: sonic disruption, ammonium sulfate fractionation, protamine sulfate treatment, DEAE-cellulose column chromatography, and L-arginine-Sepharose 6B chromatography followed by crystallization. This procedure yields a crystalline pure enzyme with a 45% recovery of the activity in crude cell-free extracts. The yield is significantly higher than that reported for this enzyme. The purified enzyme appears to be homogeneous in ultracentrifugation (s-o20, w equals 10.2 S) and isoelectric focusing (pI equals 6.13). The purified enzyme showed two bands on disc gel electrophoresis, both carrying out the deimination of L-arginine. Electrophoresis in the presence of beta-mercaptoethanol plus Na dodecyl-SO4 gave a single band (Mr, 54,000). Specific activity of this enzyme was 58.8 mumol of L-citrulline formed per min per mg of protein at 37 degrees. The optimum pH of the purified enzyme was 6.0 and maximal activity was obtained at 50 degrees. The molecular weight of the native protein was 130,000 by gel filtration and 120,000 by sedimentation-equilibrium measurements. The spectrum of the pure enzyme showed absorption maximum at 280 nm and the value of E-1%-1 CM AT 280 NM WAS 10.48 IN 0.05 M potassium phosphate buffer (pH 7.0). The crystalline enzyme hydrolyzed several L-arginine analogues. L-Homoarginine, L-alpha-amino-gamma-guanidinobutyric acid, and L-alpha-amino-beta-guanidinopropionic acid competitively inhibited the hydrolysis of L-arginine with Ki values of 25.7, 7.5, and 4.0 times 10- minus 3 M, respectively. p-Chloromercuribenzoate, Ag-+, and Hg-2+, and several metal ions inhibited the enzyme.  相似文献   

9.
1. The absence of creatine was demonstrated enzymically in the hen's-egg yolk and in the albumin contrary to former reports. 2. A comparison of the results obtained by enzymic and colorimetric methods to measure creatine is presented. 3. Creatine phosphate was not detected in the yolk extracts. 4. The content of free arginine enzymically assayed was 15.7mumol in the yolk and 3.38mumol in the albumin. Arginine amounts to practically all of the guanidine compounds in the yolk and one-half of those in the albumin. 5. No glycine amidinotransferase activity was found in the egg-yolk homogenates. 6. The heart of the chick embryo does not receive creatine from the egg and the creatine kinase activity present in this organ starting from the 27th hour of incubation suggests that the enzyme is a constitutive one working probably as an adenosine triphosphatase in a way similar to the kinase isolated from rabbit skeletal muscle. 7. Liver glycine amidinotransferase activity appeared clearly after day 5 of incubation. The specific activity reached a maximum at day 12 and then declined; however, the activity per total mass of liver increased steadily during all the prenatal period. Concomitantly with this steady increase a rise in the creatine content of the whole embryo was observed. An analogous increasing relationship between total liver amidinotransferase activity and liver creatine content was also detected during the postnatal period. 8. Repression of amidinotransferase by creatine cannot be accepted as occurring under physiological conditions since an inverse relationship between the two parameters was not observed. 9. Repression of liver amidinotransferase is observed only when pharmacological concentrations of the exogenous creatine are present in the chick liver.  相似文献   

10.
An arginine decarboxylase has been isolated from a Pseudomonas species. The enzyme is constitutive and did not appear to be repressed by a variety of carbon sources. After an approximately 40-fold purification, the enzyme appeared more similar in its properties to the Escherichia coli biosynthetic arginine decarboxylase than to the E. coli inducible (biodegradative) enzyme. The Pseudomonas arginine decarboxylase exhibited a pH optimum of 8.1 and an absolute requirement of Mg2+ and pyridoxal phosphate, and was inhibited significantly at lower Mg2+ concentrations by the polyamines putrescine, spermidine, and cadaverine. The Km for L-arginine was about 0.25 mM at pH 8.1 AND 7.2. The enzyme was completely inhibited by p-chloromercuribenzoate. The inhibition was prevented by dithiothreitol, a feature that suggests the involvement of an -SH group. Of a variety of labeled amino acids tested, only L-arginine, but not D-arginine was decarboxylated. D-Arginine was a potent inhibitor of arginine decarboxylase with a Ki of 3.2 muM.  相似文献   

11.
4-Aminobutyrate aminotransferase (GABAT) from Pseudomonas aeruginosa was purified 64-fold to apparent electrophoretic homogeneity from cells grown with 4-aminobutyrate as the only source of carbon and nitrogen. Purified GABAT catalyzed the transamination of 4-aminobutyrate, N2-acetyl-L-ornithine, L-ornithine, putrescine, L-lysine, and cadaverine with 2-oxoglutarate (listed in order of decreasing activity). The enzyme is induced in cells grown on 4-guanidinobutyrate, 4-aminobutyrate, or putrescine as the only carbon and nitrogen source. Cells grown on arginine or on glutamate contained low levels of the enzyme. The regulation of the synthesis of GABAT as well as the properties of the mutant with an inactive N2-acetyl-L-ornithin 5-aminotransferase suggest that GABAT functions in the biosynthesis of arginine by convertine N2-acetyl-L-glutamate 5-semialdehyde to N2-acetyl-Lornithine as well as in catabolic reactions during growth on putrescine or 4-guanidinobutyrate but not during growth on arginine.  相似文献   

12.
The preceding paper described the identification and some properties of peptidylarginine deiminase, which catalyzes the deimination of arginyl residues in protein, from rabbit skeletal muscle, kidney, brain, and lung. In the present work we purified peptidylarginine deiminase from rabbit skeletal muscle with a 16% yield by 7 steps. The purification involved ion-exchange chromatography on DEAE-Sephacel, gel filtration on Bio-Gel A-0.5 m, and affinity chromatography on soybean trypsin inhibitor-Sepharose 4B and aminohexyl-Sepharose 4B. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate. The molecular weight of the enzyme was estimated to be about 83,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 130,000-140,000 by gel filtration on Sephadex G-200. The isoelectric point was 5.3 and the amino acid composition was also determined. The enzyme preferably catalyzed the formation of citrulline derivatives from arginine derivatives in which both the amino and carboxyl groups were substituted and showed the highest activity towards Bz-L-Arg-O-Et among the arginine derivatives tested. The Km value for Bz-L-Arg-O-Et was found to be 0.50 X 10(-3) M. The enzyme also showed marked activities towards native protein substrates, such as protamine sulfate, soybean trypsin inhibitor, histone and bovine serum albumin.  相似文献   

13.
An agmatine amidinohydrolase (EC 3.5.3.11) has been purified from Evernia prunastri (L.) Ach. thallus incubated on 40 m M L-arginine at 26°C in the dark. The enzyme was purified 485-fold with an overall yield of 55%. It shows a pH optimum of 6.9, a temperature optimum at 35–40°C and a molecular mass (weight) of about 320 000. The Evernia hydrolase is significantly activated by L-arginine, L-ornithine and putrescine for agmatine concentrations lower than 14 m M and inhibited for agmatine concentrations producing inhibition by an excess of substrate. Urea was always a powerful inhibitor of the enzyme. The Km for agmatine was estimated to be 6.4 m M .  相似文献   

14.
Low plasma homoarginine has emerged as a risk marker for cardiovascular disease. We exploited cells of a patient with a rare inborn error of metabolism to explore potential pathways of homoarginine synthesis, using stable isotopes and mass spectrometry. Control lymphoblasts, as opposed to lymphoblasts from an arginine:glycine amidinotransferase (AGAT)-deficient patient, were able to synthesize homoarginine from arginine and lysine. In contrast, in a patient with a deficiency of the urea cycle enzyme argininosuccinate synthase, plasma homoarginine was not decreased. We conclude that promiscuous activity of AGAT, a key enzyme in creatine synthesis, plays a pivotal role in homoarginine synthesis.  相似文献   

15.
N-Acetylglutamate synthetase (EC 2.3.1.1), the first enzyme of arginine synthesis was shown to be under multiple control by the reaction products and the endproducts of the pathway in tenfold purified extracts from Pseudomonas aeruginosa. Synergistic inhibition of the enzyme was exerted by N-acetyl-L-glutamate and polyamines. At 0.5 mM N-acetyl-L-glutamate spermine was the most potent inhibitor, whereas spermidine, cadaverine and putrescine inhibited the enzyme to a lesser extent. Furthermore, feedback-inhibition by L-arginine was enhanced synergistically by N-acetyl-L-glutamate and CoA.  相似文献   

16.
A Humm  E Fritsche  S Steinbacher    R Huber 《The EMBO journal》1997,16(12):3373-3385
L-arginine:glycine amidinotransferase (AT) catalyses the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the immediate precursor of creatine. We have determined the crystal structure of the recombinant human enzyme by multiple isomorphous replacement at 1.9 A resolution. A telluromethionine derivative was used in sequence assignment. The structure of AT reveals a new fold with 5-fold pseudosymmetry of circularly arranged betabeta alphabeta-modules. These enclose the active site compartment, which is accessible only through a narrow channel. The overall structure resembles a basket with handles that are formed from insertions into the betabeta alphabeta-modules. Binding of L-ornithine, a product inhibitor, reveals a marked induced-fit mechanism, with a loop at the active site entrance changing its conformation accompanied by a shift of an alpha-helix by -4 A. Binding of the arginine educt to the inactive mutant C407A shows a similar mode of binding. A reaction mechanism with a catalytic triad Cys-His-Asp is proposed on the basis of substrate and product bound states.  相似文献   

17.
The putrescine biosynthetic enzyme agmatine ureohydrolase (AUH) (EC 3.5.3.11) catalyzes the conversion of agmatine to putrescine in Escherichia coli. AUH was purified approximately 1,600-fold from an E. coli strain transformed with the plasmid pKA5 bearing the speB gene encoding the enzyme. The purification procedure included ammonium sulfate precipitation, heat treatment, and DEAE-sephacel column chromatography. The molecular mass of nondenatured AUH is approximately 80,000 daltons as determined by gel-sieving column chromatography, while on denaturing polyacrylamide gels, the molecular mass is approximately 38,000 daltons; thus, native AUH is most likely a dimer. A radiolabeled protein extracted from minicells carrying the pKA5 plasmid comigrated with the purified AUH in both sodium dodecyl sulfate-polyacrylamide and native polyacrylamide gels. The pI of purified AUH is between 8.2 and 8.4, as determined by either chromatofocusing or isoelectric focusing. The Km of purified AUH for agmatine is 1.2 mM; the pH optimum is 7.3. Neither the numerous ions and nucleotides tested nor polyamines affected AUH activity in vitro. EDTA and EGTA [ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] at 1 mM inactivated AUH activity by 53 and 74%, respectively; none of numerous divalent cations tested restored AUH activity. Ornithine inhibited AUH activity noncompetitively (Ki = 6 X 10(-3) M), while arginine inhibited AUH activity competitively (Ki = 9 X 10(-3) M).  相似文献   

18.
Growth of Tetrahymena thermophila in a synthetic nutrient medium with or without the essential amino acid L-arginine was studied in the presence or absence of the arginine metabolites L-citrulline and L-ornithine and the polyamines putrescine, spermidine, and spermine. The effects of the growth conditions on the stimulations of the enzymes of the arginine metabolic and polyamine biosynthetic pathway, arginine deiminase (ADI), citrulline hydrolase (CH), ornithine decarboxylase (ODC), and ornithine-oxo-acid aminotransferase were determined. Tetrahymena cells were unable to grow in the absence of L-arginine and the amino-acid utilization was greatly impaired. None of the metabolites or polyamines was able to substitute for arginine. In the presence of arginine, Tetrahymena cultures grew well and citrulline and ornithine did not alter the growth behaviour in any way. In the presence of putrescine, the lag period was decreased from 3 h to 2 h. Spermidine and spermine acted similar to putrescine but less pronounced. The stimulation of the activity of ADI, the key enzyme of arginine degradation, was absolutely dependent upon the presence of arginine in the medium: in the absence of arginine, the low ADI activity which was present in the cells before inoculation was decreased to zero levels within 30 min. In the presence of arginine, the stimulation of ADI was not altered by citrulline and ornithine but putrescine, spermidine, and spermine decreased ADI-stimulation to half of the control values. The stimulation of CH activity in the presence of arginine was not altered by any added metabolite or polyamine. In the media without arginine, stimulation of CH was greatly reduced, in the presence of ornithine more than in its absence, and even more in the presence of putrescine and spermidine. Stimulation of ODC activity in the presence of arginine was not affected by citrulline and ornithine but in the presence of polyamines it was rapidly decreased to unstimulated levels after an initial ca. 10-fold increase. The "hyperstimulation" of ODC in the absence of free arginine was reduced to normal in the presence of citrulline, the stimulation was decreased even below normal levels in the presence of ornithine and polyamines decreased ODC activity to zero levels. O delta T activity was stimulated more in the presence of arginine than in its absence. In both cases the stimulation was enhanced in the presence of polyamines and only in the absence of arginine--by ornithine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Spermidine synthase (EC 2.5.1.16) was purified to homogeneity for the cytosol of soybean (Glycine max) axes using ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, ω-aminooctyl-Sepharose and ATPA-Sepharose. The molecular mass of the enzyme estimated by gel filtration and SDS–PAGE is 74 kDa. Cadaverin and 1,6-diaminohexane could not replace putrescine as the aminopropyl acceptor. Kinetic behaviors of the substrate are consistent with a ping pong mechanism. The kinetic mechanism is further supported by direct evidence confirming the presence of an aminopropylated enzyme and identification of product, 5′-deoxy-5′-methylthioadenosine, prior to adding putrescine. The Km values for decarboxylated S-adenosylmethionine and putrescine are 0.43 μM and 32.45 μM, respectively. Optimum pH and temperature for the enzyme reaction are 8.5 and 37°C, respectively. The enzyme activity is inhibited by N-ethylmaleimide and DTNB, but stimulated by Co2+, Cu2+ and Ca2+ significantly, suggesting that these metal ions could be the cellular regulators in polyamine biosynthesis.  相似文献   

20.
The formation of 2-guanidinoethanol (GEt) from L-arginine (Arg) and ethanolamine (EA) was studied using rat kidney homogenates. Maximum GEt formation was observed between pH 8.7 and 9.1, and the enzyme catalyzing the GEt synthesis was stable between pH 5.6 and 9.1. The rate of GEt formation from Arg and EA by rat kidney homogenates obeyed simple Michaelis-Menten type kinetics. L-Ornithine and glycine inhibited GEt formation by rat kidneys. Both of them inhibited GEt formation in a linear mixed-type inhibitory manner when Arg concentrations were varied at a fixed concentration of EA, while they showed competitive inhibition when EA concentrations were varied at a fixed concentration of Arg. L-Canavanine and guanidinoacetic acid as well as Arg acted as an amidine donor for GEt formation, but L-homoarginine, 3-guanidinopropionic acid and 4-guanidinobutyric acid did not. GEt synthesis was also observed in the rat pancreas. It had almost half of the activity of rat kidney to form GEt. This ratio of kidney to pancreas was approximately equal to that of L-arginine:glycine amidinotransferase (transamidinase, EC 2.1.4.1) in kidney and pancreas. These results suggest that GEt may be synthesized from Arg and EA by a transamidinase catalyzing reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号