首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guivarch  A.  Hinsinger  P.  Staunton  S. 《Plant and Soil》1999,211(1):131-138
Uptake by roots from contaminated soil is one of the key steps in the entry of radiocaesium into the food chain. We have measured the uptake by roots of radiocaesium and its transfer to shoots of a heathland grass, sheep fescue (Festuca ovina L.) from two contrasting agricultural soils, a sandy podzol and a clayey calcareous soil. A culture device which keeps the roots separate from the soil was used thus allowing rhizosphere soil to be obtained easily and enhancing the effect of root action. Biomass production and 137Cs in shoots and roots were recorded. Cs adsorption was studied on both the initial, nonrhizosphere soil and on rhizosphere soil in dilute soil suspension. Cs desorption was measured by resuspending subsamples of contaminated soil in solutions containing various concentrations of stable Cs. The proportion of Cs fixed, i.e. not readily desorbable, was calculated by comparison of the adsorption and desorption isotherms. Uptake by roots varied considerably between soils and did not appear to be diffusion limited. Root-to-shoot transfer did not differ for the two soils studied. Root action considerably enhanced Cs adsorption on the soils, particularly the in sandy podzol with a low Cs affinity. The value of Kd was increased by up to an order of magnitude. A large proportion of adsorbed Cs was found to be fixed, the Kd was up to seven times greater on desorption than adsorption, indicating that up to 80% of adsorbed Cs was not readily exchangeable. Root action had little effect on the fixed fraction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
This paper describes the application of a mechanistic model in the study of radionuclide soil–plant transfer and the obtainment of predictive estimates of radionuclide plant contamination. Soil–plant K and 134Cs transfer rates were measured and compared with those predicted by the Barber–Cushman model. The experiment was performed on pea plants grown in pots and in two different types of soil (Calcic Luvisol and Fluvisol). For K, model predictions proved valid for all development stages sampled; for 134Cs, the quality of the prediction depended on the plant stage. In both, parameter estimates varied depending on plant age and soil type. The model was also run for 134Cs using the Michaelis–Menten parameters obtained for K. In this case, the predicted values were significantly correlated with those measured, but about three times higher. Thus, a positive plant discrimination of K versus 134Cs in plant absorption is observed for the types of soil studied. As regression proved to be significant, K absorption rates may be used to estimate 134Cs absorption in determining radiocaesium plant uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
植物根对土壤中PAHs的吸收及预测   总被引:22,自引:2,他引:20  
凌婉婷  朱利中  高彦征  熊巍 《生态学报》2005,25(9):2320-2325
研究了多种植物根对土壤中多环芳烃(PAHs)的吸收作用,阐述了根系吸收与土壤污染强度、污染物性质、植物组成等的关系,并用实验数据检验了限制分配模型对植物吸收土壤中PAHs的预测性能。供试土壤中菲和芘的起始浓度分别为0~457和0~489mg/kg;45d后,随土壤中菲和芘浓度提高,根中菲和芘含量明显增大,根系富集系数则减小。不同植物根中菲和芘含量和根系富集系数与根的脂肪含量呈显著正相关。由于芘的Kow较大,同种植物根中芘含量、芘的根系富集系数则远大于菲。经45d处理,尽管土壤中菲浓度变化很大(从不足1mg/kg到约45mg/kg),限制分配模型能较好地预测供试植物根中菲的含量,黑麦草和菜心根中菲含量的预测误差低于81%。作为限制分配模型预测植物吸收的关键参数,不同植物根吸收菲的αpt值与根脂肪含量显著正相关。  相似文献   

4.
Drobner  Ute  Tyler  Germund 《Plant and Soil》1998,201(2):285-293
Earlier studies have demonstrated close inverse relationships between Rb+ concentrations in plants and pH or base (including K+) saturation of soils. This study aims at elucidating conditions in soils influencing plant uptake of Rb+. Growth experiments with Carex pilulifera L. were performed, modifying the acidity and K+ supply of acid soils and solutions. We were unable to assess any reduction in Rb+ uptake by adding precipitated CaCO3 to acid soil unless pH was raised to near neutrality. Though not fully compensating the loss of soil solution K+and exchangeable K+ from uptake by the growing plants, soil treated with 0.5 mM K+ (as KCl) reduced the Rb+ concentration in the shoots by 40% without measurably changing soil pH. Experiments varying the pH and K+ concentration of a nutrient solution (20% Hoagland), spiked with 6 uM Rb+, clearly demonstrated that plant uptake of Rb+ and K+ was unaffected by acidity in the pH range 3.6–5.0 tested, whereas Rb+ uptake was reduced by ca. 50%, when K+ concentration was increased from 1.2 to 3.6 mM. The sensitivity of this reaction indicates that shortage or low availability of K+ controls Rb+ uptake from acid soils, being probably more important than soil acidity per se. Secondary effects of high soil acidity, such as leaching losses of K+, might also be of importance in accounting for the high uptake of Rb+ from such soils. It is suggested that leaf analysis of Rb+ may be used as a method to assess early stages of K+ deficiency in plants on acid soils.  相似文献   

5.
6.
Spring wheat plants were grown in a 137Cs labelled nutrient solution, either in the presence or absence of NH4 as a secondary N source. Between 11 and 64 days after sowing (DAS), plants were harvested on nine occasions. The plants supplied with NH4 and NO3 had lower root 137Cs Activity Concentrations (AC) than those supplied with NO3 only. Shoot AC were equal in both nutrition treatments. Shoot and root 137Cs AC (dry weight basis) showed the same trends with plant age in both nutrition treatments. Shoot AC almost doubled between 11 and 28 DAS after which they gradually decreased concomitant with a similar decrease in K concentrations. Root AC were always higher than shoot AC and increased to a maximum at 35 DAS after which they fluctuated. Expressed on a tissue water basis, the 137Cs AC varied less during plant age than did dry weight based AC. Furthermore, root and shoot AC expressed on a tissue water basis were almost equal. It is shown that the initial increase in 137Cs AC in both root and shoot can largely be explained by the initial dilution of absorbed 137Cs in the unlabelled seedling tissues. No correlation was found between K and 137Cs distribution among ears, leaves, stems and roots in 64 old wheat plants. NH4 as a secondary N source in a nitrate nutrient solution marginally affected 137Cs distribution.Abbreviations AC activity concentrations - DAS days after sowing FAX no corresponding author: +3216321997  相似文献   

7.
Erkki Aura 《Plant and Soil》1996,186(2):237-243
The assumption of uniform water flow to the root or uniform water potential at the root surface was shown by Hainsworth and Aylmore (1986, 1989) to be erroneous. The present paper demonstrates how the non-uniform uptake of water by a single root can be modeled. Differential equations are numerically solved to describe simultaneous water movement in the plant and in the soil. In the plant, boundary conditions are the water potentials at the root surface (Ψs) and in the xylem at the root base (Ψb). A set of difference equations describe the flow of water radially through the cortex to the xylem and in the xylem axially upwards to the base. For calculating the water flow in the soil and the values of Ψs, i.e. the boundary conditions for flow in the root, the finite element method (FEM) is used, the boundary conditions being the flux of water into the plant root and the zero flow across the wall, bottom and surface of a hypothetical soil cylinder surrounding the root. ei]Section editor: B E Clothier  相似文献   

8.
Penetration of very strong soils by seedling roots of different plant species   总被引:19,自引:2,他引:17  
The abilities of seedling roots of twenty-two plant species to penetrate a strong growth medium were compared under controlled conditions. Seedlings were grown for 10 days in compression chambers filled with siliceous sandy soil at 0.2 kg kg–1 water content and mean penetrometer resistance of 4.2 MPa. Root elongation and thickening were measured after growth. The results show that soil strength reduced the elongation of roots of all plant species by over 90% and caused the diameters of the roots to increase compared with control plants grown in vermiculite (0 MPa resistance).Differences in both root elongation and root diameter were observed among plant species. Generally, the roots of dicotyledons (with large diameters) penetrated the strong medium more than graminaceous monocotyledons (with smaller diameters). There was a significant positive correlation (r=0.78, p<0.05) between root diameter and elongation over all the species in the stressed plants. The species were ranked according to the relative root elongation and relative root thickening. Based on this ranking, lupin (Lupinus angustifolius), medic (Medicago scutelata) and faba bean (Vicia faba) were the species with the greatest thickening and elongation while wheat (Triticum aestivum), rhodesgrass (Chloris gayana) and barley (Hordeum vulgare) had the least. The weight of the seeds did not seem to influence either the thickening or elongation of the roots.  相似文献   

9.
为了阐明根区交替控制灌溉(CRDAI)条件下玉米根系吸水规律,通过田间试验,在沟灌垄植模式下采用根区交替控制灌溉研究玉米根区不同点位(沟位、坡位和垄位)的根长密度(RLD)及根系吸水动态。研究表明,根区土壤水分的干湿交替引起玉米RLD的空间动态变化,在垄位两侧不对称分布,并存在层间差异;土壤水分和RLD是根区交替控制灌溉下根系吸水速率的主要限制因素。在同一土层,根系吸水贡献率以垄位最大,沟位最低;玉米营养生长阶段,10—30 cm土层的根系吸水速率最大;玉米生殖生长阶段,20—70 cm为根系吸水速率最大的土层,根系吸水贡献率为43.21%—55.48%。研究阐明了交替控制灌溉下根系吸水与土壤水分、RLD间相互作用的动态规律,对控制灌溉下水分调控机理研究具有理论意义。  相似文献   

10.
高等植物根细胞高亲和性吸收钾的机制   总被引:2,自引:0,他引:2  
赵淑清  郭剑波 《生命科学》2001,13(3):132-134,125
K^ 是高等植物所必需的大量元素,它在植物的膨压调节、电荷平衡、叶片运动和蛋白质合成中都具有重要的作用。高等植物根细胞吸收K^ 通过高亲和性K^ 吸收系统和低亲和性K^ 吸收系统和低亲和性K^ 吸收系统两条途径。高新和性K^ 吸收系统,是在微摩尔浓度的外界K^ 水平时起作用,K^ 的吸收必须消耗能量。近年来,随着分子生物学技术和电生理技术的飞速发展,植物根细胞吸收K^ 的机制取得了较大进展。本文对高等植物根细胞高亲和性吸收K^ 的机制的研究进展进行了综述。  相似文献   

11.
Smolders  E.  Sweeck  L.  Buysse  J.  Van Den Brande  K.  Merckx  R. 《Plant and Soil》1993,(1):431-434
Young spinach (Spinacia oleracea L., cv. Subito) and wheat (Triticum aestivum, cv. Tonic) plants were hydroponically grown in eight different nutrient solutions containing 137Cs. Ca, Mg, K and NH4 concentrations were varied whilst anion concentrations were equal in all solutions. The large differences in potassium content between spinach and wheat were not reflected in similar differences in 137Cs content at any nutritive treatment.Both crops were also grown in a potted podzolic soil contaminated with radiocaesium. This experiment was conducted in a phytotron at two climatic conditions (summer and winter) which differed in day length and light intensity. Wheat plants had higher 137Cs levels than spinach at both conditions. The 137Cs levels furthermore decreased during development. The 137Cs plant/soil solution concentration ratio was lower at the summer than at the winter conditions.  相似文献   

12.
The comparative uptake of four perfluorinated carboxylic acids (PFCAs) by wheat (Triticum aestivum L.) grown in nutrient solution was investigated. Wheat is the main food crop in northern China and may become a potential pathway of human exposure to these PFCAs. The uptake of four PFCAs from water at a fixed concentration (1 μg/mL) increased over time, approaching a steady state, and except for the short-chain perfluorobutanoic acid, most of the total mass of each of the PFCAs taken up by wheat was found to be at the root. The root concentration factor (RCF) and shoot/root concentration factor (SRCF) were calculated, and with the increase in carbon chain length, the RCFs increased but SRCFs decreased, which indicated that long-chain PFCAs had stronger root uptake and weaker translocation capacities than short-chain PFCAs. In addition, pH could obviously impact the uptake of four PFCAs in the roots and shoots of wheat, and the highest concentrations were found at pH = 7 when the pH increased from 4 to 10.  相似文献   

13.
Laboratory expriments have demonstrated that radiocaesium can be released in different proportions from Baltic sediments, depending on the type and origin of sediment, contact time and solid-to-liquid phase ratio. Rapidly accumulating sediments in areas affected by river discharge have much higher percentage of exchangeable radiocaesium than slowly accumulating marine sediments. The latter have been shown to {uptake radiocaesium from overlying sea water at high suspended loads. Pronounced radiocaesium gradients at sediment-water interface in Gda\'nsk Bay can be explained by either diffusion from pore water or desorption from sediment particles uprised by waves and/or bottom currents, or a combination of both. Desorption is likely to decrease with age of the sediment.  相似文献   

14.
Phytoremediation is perceived as an alternative technology for contaminated site remediation. Yet, the mechanisms plants use to remove organic contaminants have not been fully elucidated. The objective of the current study was, therefore, undertaken to clarify the contribution of plants to the disappearance of organic contaminants in soil. Four plant species, including alfalfa, tall fescue, barley, and orchard grass, were examined for the ability to facilitate the degradation of the polyhydric aromatic hydrocarbon, anthracene. Soil samples were intermittently collected for two months to measure the disappearance of anthracene and bacterial number by GC and epifluorescence microscopy, respectively. Plant exudates were collected to determine their ability to solubilize anthracene. Alfalfa showed a 28% enhancement in the disappearance of anthracene compared to the unplanted control. Root exudates from alfalfa increased the release of soluble anthracene by 25 to 80% compared to the other species and unplanted controls. Among the plants tested, there was a positive correlation between enhancing the disappearance of anthracene by plants grown in soil and increasing the release of anthracene by isolated plant exudates. The results suggest that root exudates facilitate the mobilization of anthracene from soil and that the successful implementation of phytoremediation depends on the plant species. Further, root exudates may be a useful tool in screening plants for possible application in anthracene remediation.  相似文献   

15.
《植物生态学报》2018,42(9):885
根系吸水是树木水分关系的重要环节, 在树木生理活动中发挥着至关重要的作用。深层土壤中的水资源含量一般相对较高, 常可为树木生长供给大量水分, 并在旱季保障其生存与正常生长。因此, 了解树木对深层土壤水的吸收利用特征与机制, 可帮助深入认识树木与环境的互作机制、树木的生长与生存策略、物种间的共存与竞争机制等内容, 同时还可帮助构建既能降低外部水资源投入, 又能避免水分生态环境负面效应的人工林绿色栽培制度。基于已有研究, 该文对树木吸收利用深层土壤水的特征与机制进行了综述。首先, 探讨了深层根系和深层土壤的界定, 指出对于除寒温带针叶林以外的其他主要森林植被类型, 可以1 m作为树木深根系和深土层的平均划分(参考)标准, 并明确了全球范围内树木深根系的成因。其次, 对已有研究中观察到的树木对深层土壤水的吸收利用特征及其影响因素进行了归纳与总结, 并从深根系性状调节、整株水力特性协调两方面探讨了树木高效吸收利用深层土壤水的机制, 如可通过深根系的空间、时间和效率调节策略来促进对深土层水分的吸收。最后, 提出了树木利用深土层水分对人工林培育的几点启示, 包括水分管理.中应使林木适度利用深层土壤水, 选用合适的灌水频率、合理的树种混交能促进深层土壤水分储库“缓冲”作用的发挥, 基于树木土壤水分利用深度的间伐木选择技术等, 并指出了该领域现有研究的不足以及今后的发展方向。  相似文献   

16.
Coelho  Eugenio F.  Or  Dani 《Plant and Soil》1999,206(2):123-136
Information on root distribution and uptake patterns is useful to better understand crop responses to irrigation and fertigation, especially with the limited wetted soil volumes which develop under drip irrigation. Plant water uptake patterns play an important role in the success of drip irrigation system design and management. Here the root systems of corn were characterized by their length density (RLD) and root water uptake (RWU). Comparisons were made between the spatial patterns of corn RWU and RLD under surface and subsurface drip irrigation in a silt loam soil, considering a drip line on a crop row and between crop rows. Water uptake distribution was measured with an array of TDR probes at high spatial and temporal resolution. Root length density was measured by sampling soil cores on a grid centered on crop row. Roots were separated and an estimation of root geometrical attributes was made using two different image analysis programs. Comparisons of these programs yielded nearly identical estimates of RLD. The spatial patterns of RWU and RLD distributions, respectively normalized to the total uptake and root length, were generally similar only for drip line on a crop row, but with some local variations between the two measures. Both RLD and RWU were adequately fitted with parametric models based on semi-lognormal and normal Gaussian bivariate density functions (Coelho and Or, 1996; Soil Sci. Soc. Am. J. 60, 1039–1049).  相似文献   

17.
Purbopuspito  J.  Van Rees  K.C.J. 《Plant and Soil》2002,239(2):313-320
Efficient fertilizer application requires an understanding of the distribution of roots and soil nutrients in the soil profile. Cultural practices for clove trees in Indonesia has resulted in phosphorus (P) fertilizer being applied at the canopy edge; however, in these high P fixing soils efficient P fertilizer application should occur with the highest root densities. The objective of this study, therefore, was to determine the rooting distribution at various distances from the tree and soil depths for clove (Eugenia aromatica OK; variety Zanzibar) trees growing on an Andosol soil at Modoinding, Indonesia. Root distributions were determined to a 100-cm soil depth using soil cores at 0.5, 1.0 and 1.5 times the canopy radius for five 10-year-old clove trees grown on either level terrain or 23% slopes. Clove root length and weight densities decreased with soil depth and distance from the tree base. Fine clove roots (1 mm dia) comprised 72% of the total root length and was three to five times higher underneath the canopy than that outside the canopy. Roots were concentrated in the upper soil horizons; however, up to 36% of the total root length was found at a depth of 50–100 cm. Clove roots for trees growing at the level landscape position had the highest root length densities. Intercropped species root length densities were higher than clove root length densities at 1.5 times the canopy radius whereas intercropped root weight densities were higher than that for clove roots at both 1.5 and 1 times the canopy radius. Results suggest that fertilizer applications should be placed closer to the tree trunk rather than at the canopy edge to maximize P uptake by clove roots.  相似文献   

18.
Christ RA 《Plant physiology》1974,54(4):582-585
The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species.  相似文献   

19.
Potatoes were grown on two contrasting soils but in adjacent sites to investigate the effect of soil type on tuber production, nutrient uptake and nutrient inflow rates (uptake rate per unit length of root). The year of the study was wetter than normal. Tuber growth, root growth and nutrient uptake were all greater on the coarse rather than the fine-textured soil. However there was no difference in nutrient inflow rates between plants growing in the two soils. Therefore, it was concluded that the crop on the finer textured soil did not have an adequate nutrient supply, particularly of N, relative to the crop on the coarser-textured soil. The reasons for the low supply of nitrogen in the fine textured soil are not clear, but it might have been due to the smaller root system or to enhanced losses of nitrogen by denitrification caused by the combination of soil physical properties and poor drainage in a wet year.  相似文献   

20.
根系氮吸收过程及其主要调节因子   总被引:5,自引:0,他引:5  
氮(N)是植物根系吸收最多的矿质元素之一.全球变化将使土壤中N的有效性发生改变,影响陆地生态系统碳分配格局与过程.研究根系N吸收及其调控对预测生态系统结构和功能具有重要理论意义.由于土壤中存在多种形态的N源,长期的生物进化和环境适应导致植物根系对不同形态N的吸收部位、机理及调控有较大差别.因此,植物长期生长在以某一形态N源为主的土壤上就形成了不同的N吸收机制和策略.本文简述了近年来在植物根系N吸收和调控方面的最新研究进展,重点评述了不同形态N在土壤中的生物有效性,根系N吸收部位,N在木质部中的装载和运输,不同形态N(NO3^-、NH4^+和有机氮)的吸收机制,以及根系N吸收的自身信号调控和环境因子对根系N吸收的影响.在此基础上,提出了目前根系N吸收研究中存在的几个问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号