首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleases A produced by two strains of Staphylococcus aureus, which have different stabilities, differ only in the identity of the single amino acid at residue 124. The nuclease from the Foggi strain of S. aureus (by convention nuclease WT), which contains His124, is 1.9 kcal.mol-1 less stable (at pH 5.5 and 20 degrees C) than the nuclease from the V8 strain (by convention nuclease H124L), which contains Leu124. In addition, the population of the trans conformer at the Lys116-Pro117 peptide bond, as observed by NMR spectroscopy, is different for the two variants: about 15% for nuclease WT and 9% for nuclease H124L. In order to improve our understanding of the origin of these differences, we compared the properties of WT and H124L with those of the H124A and H124I variants. We discovered a correlation between effects of different residues at this position on protein stability and on stabilization of the cis configuration of the Lys116-Pro117 peptide bond. In terms of free energy, approximately 17% of the increase in protein stability manifests itself as stabilization of the cis configuration at Lys116-Pro117. This result implies that the differences in stability arise mainly from structural differences between the cis configurational isomers at Pro117 of the different variants at residue 124. We solved the X-ray structure of the cis form of the most stable variant, H124L, and compared it with the published high-resolution X-ray structure of the cis form of the most stable variant, WT (Hynes TR, Fox RO, 1991, Proteins Struct Funct Genet 10:92-105). The two structures are identical within experimental error, except for the side chain at residue 124, which is exposed in the models of both variants. Thus, the increased stability and changes in the trans/cis equilibrium of the Lys116-Pro117 peptide bond observed in H124L relative to WT are due to subtle structural changes that are not observed by current structure determination technique. Residue 124 is located in a helix. However, the stability changes are too large and follow the wrong order of stability to be explained simply by differences in helical propensity. A second site of conformational heterogeneity in native nuclease is found at the His46-Pro47 peptide bond, which is approximately 80% trans in both WT and H124L. Because proline to glycine substitutions at either residue 47 or 117 remove the structural heterogeneity at that position and increase protein stability, we determined the X-ray structures of H124L + P117G and H124L + P47G + P117G and the kinetic parameters of H124L, H124L + P47G, H124L + P117G, and H124L + P47G + P117G. The individual P117G and P47G mutations cause decreases in nuclease activity, with kcat affected more than Km, and their effects are additive. The P117G mutation in nuclease H124L leads to the same local conformational rearrangement described for the P117G mutant of WT (Hynes TR, Hodel A, Fox RO, 1994, Biochemistry 33:5021-5030). In both P117G mutants, the loop formed by residues 112-117 is located closer to the adjacent loop formed by residues 77-85, and residues 115-118 adopt a type I' beta-turn conformation with the Lys116-Gly117 peptide bond in the trans configuration, as compared with the parent protein in which these residues have a typeVIa beta-turn conformation with the Lys116-Pro117 peptide bond in the cis configuration. Addition of the P47G mutation appears not to cause any additional structural changes. However, the electron density for part of the loop containing this peptide bond was not strong enough to be interpreted.  相似文献   

2.
We report here the results on N-acetyl-L-proline-N'-methylamide (Ac-Pro-NHMe) calculated at the HF/6-31+G(d) level with the conductor-like polarizable continuum model (CPCM) of self-consistent reaction field methods to investigate the changes of backbone and prolyl ring along the cis-trans isomerization of the prolyl peptide bond. From the potential energy surface, the barrier to ring flip from the down-puckered conformation to the up-puckered one is estimated to be 2.5 and 3.2 kcal/mol for trans and cis conformers of Ac-Pro-NHMe, respectively. In particular, the ring flip seems to be inaccessible in the intermediate regions between trans and cis conformations, because of higher barriers (approximately 13-19 kcal/mol) to rotation of the prolyl peptide bond. The torsion angles for backbone and prolyl ring vary largely around the transition states at omega' approximately 120 degrees and -70 degrees for the prolyl peptide bond. Three kinds of puckering amplitudes show the same trend of puckering along the cis-trans isomerization although their absolute values are different. In particular, trans and cis conformations have the almost same degree of puckering. The cis populations and barriers to rotation of the prolyl peptide bond for Ac-Pro-NHMe are increased with the increase of solvent polarity, which is mainly ascribed to the decreases of relative free energies for cis conformations and the increase of relative free energies for transition states.  相似文献   

3.
The solution-state conformations of eight proline-containing peptide fragments found in human salivary proline-rich glycoprotein (PRG) were investigated in 2 x distilled water (treated with metal ion chelating resin) using 13C-nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. The peptide sequences and acronyms were as follows: PRG9-2 = NH2-G(1)-P(2)-CONH2, PRG9-3 = NH2-G(1)P(2)-P(3)-CONH2, PRG9-4 = NH2-G(1)-P(2)-P(3)-P(4)-CONH2, PRG9-5 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-CONH2, PRG9-6 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-CONH2, PRG9-7 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-CONH2, PRG9-8 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-CONH2 and PRG9-9 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-P(9)-CONH2. Sequence-specific resonance assignments from the 13C-NMR spectra indicated that the trans proline isomer dominated the conformations of the peptides. CD results clearly showed the presence of the poly-L-proline II helix as the major conformation in PRG9-3----PRG9-5, supplemented by beta- and/or gamma-turns in PRG9-6----PRG9-9. These data suggest that in "metal free" water, native PRG could contain several small poly-L-proline II helices along with beta- and/or gamma-turns. Since proline is the major amino acid present in native PRG, these localized conformations may contribute to PRG's global conformation and act as a primary force in determining its biological activities.  相似文献   

4.
The isomeric composition of retinal in membrane-bound and in purified but detergent-free, dark-adapted halorhodopsin was found to be about 70% 13-cis and 30% all-trans. Any illumination increased the all-trans content relative to the dark-adapted state, but blue illumination shifted the isomeric composition more toward all-trans while red illumination of blue-adapted samples shifted it more toward 13-cis. In the presence of chloride this photoisomerization caused the kind of photochromic behavior reported earlier in Smith, S. O., Marvin, M. J., Bogomolni, R. A., and Mathies, R. A. (1984) J. Biol. Chem. 259, 12326-12329, i.e. blue light caused the absorption maximum to move toward longer wavelengths and red light reversed the shift. Only the all-trans chromophore exhibited the complete photocycle described earlier in detergent-solubilized halorhodopsin, and this was the form that could be associated with light-driven chloride transport activity in cell envelope vesicles. In the absence of chloride the spectroscopic changes caused by illumination were much smaller. Reconstitution of bleached preparations with 13-cis- and all-trans-retinal, in the presence and absence of chloride, confirmed that the difference between the absorption maxima of the two isomeric forms of the chromophore is affected by chloride: 13-cis-halorhodopsin absorbs at about 567-568 nm with and without chloride, and the all-trans pigment absorbs near 568 nm in the absence of chloride, but at 578 nm in its presence. The simplest explanation of this finding is that most of the red-shift which accompanies the 13-cis----all-trans transition originates from electrostatic interaction of the retinal with chloride bound in its vicinity.  相似文献   

5.
Analogs of deamino-oxytocin wherein the Leu-Gly peptide bond has been replaced by a tetrazole moiety or by a double bond of trans configuration were synthesized and their biological activities evaluated. Trans double bond was found to be the most appropriate substitution for the amide bond (uterotonic activity 24% of the deamino-oxytocin). In the case of all three analogs low but prolonged galactogogic activity was found and the ratio of uterotonic in vitro and in vivo activity was surprisingly high (ranging from 4.5 to 20).  相似文献   

6.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

7.
L N Lin  J F Brandts 《Biochemistry》1985,24(23):6533-6538
In an effort to further develop the technique of isomer-specific proteolysis, a number of proline-containing substrates were subjected to hydrolysis in the presence of chymotrypsin, trypsin, or prolidase. The objective was to determine whether direct hydrolysis of the cis form of the substrate could occur and, if so, the extent to which it is slower than the hydrolysis of the equivalent trans form. It is shown that for both peptide and amide substrates, which contain proline at the P2 position, the cis form can be hydrolyzed directly by either chymotrypsin or trypsin, in contrast to earlier suggestions in the literature. For similar amide substrates, it was found that chymotrypsin has a lower catalytic efficiency for the cis form, relative to the trans form, by a factor of 20 000 while, for trypsin and its substrate, the cis form was cleaved about 2000 times less efficiently. Results for a trypsin substrate with proline at the P2' position, rather than the P2 position, were quite different however, since there was no indication that the cis form could be directly cleaved even at the highest enzyme concentration. There was also no indication that prolidase could cleave the dipeptide Phe-Pro when the active bond itself is in the cis form. These collective results suggest that the ability of proteases to cleave a substrate with a cis peptide bond depends strongly on the location of the cis bond relative to the active bond that is being cleaved.  相似文献   

8.
Alkaline hydrolysis of corneal proteins in the alkali-injured eye releases N-acetyl-proline-glycine-proline (Ac-Pro-Gly-Pro-OH) among other peptides. It has been shown that this tripeptide is a neutrophil chemoattractant. Existing data suggest that the release of this peptide is the catalytic event for early neutrophil invasion of the cornea leading to corneal ulcers. In order to design inhibitors of this tripeptide chemoattractant that would block neutrophil invasion and diminish corneal ulcers, we studied the solution properties of this tripeptide by NMR spectroscopy and compared this peptide to Ac-Pro-Gly-OH (a weaker chemoattractant), and to Ac-Pro-OH (inactive). The NMR data were consistent with Ac-Pro-Gly-Pro-OH existing in solution as a mixture of four isomers with different cis and trans conformations about the two X-proline amide bonds. The isomer with two trans conformations (trans-trans) was the most dominant (41%) in aqueous solution. This was followed by the isomers with mixed cis and trans conformations (trans-cis, 26% and cis-trans, 20%). The isomer with two cis conformations (cis-cis) was the least favored (13%). The populations of these isomers were investigated in DMSO and they were similar to those reported in aqueous solutions except that the ordering of the trans-cis and cis-trans isomers were reversed. NMR NH temperature coefficients and nuclear Overhauser effect (NOE) measurements as well as CD spectroscopy were used to demonstrate that the four isomers exist primarily in an extended conformation with little hydrogen bonding. The available (NOE) information was used with molecular dynamics calculations to construct a dominant solution conformation for each isomer of the tripeptide. This information will serve as a model for the design of peptide and nonpeptide inhibitors of the chemoattractant.  相似文献   

9.
The structure of Z-Pro psi [CN4]-Ala-OBzl has been determined by X-ray crystallographic techniques. The structure crystallizes in space group P2(1) with cell constants a = 22.176(3) A, b = 6.141(1)A, c = 8.275(1) A, beta = 98.31(1), and Z = 2. The structure has been refined to a residual of 0.038 for 2538 independent data. The amide bond between the prolyl and alanyl residues is cis, a result of the presence of the tetrazole ring system, as is the urethane bond linking the benzyloxycarbonyl and the prolyl groups. A comparison of the structures in this study to other structures containing cis amide bonds shows that the tetrazole ring system, when incorporated into peptides, mimics a cis amide bond. Changes in the distance between the alpha-carbons adjacent to the tetrazole rings in the linear peptide as compared with the bicyclic diketopiperazine required a reassessment of the conformational mimicry with the cis amide bond.  相似文献   

10.
A 17-residue disulfide-bridged peptide (PAK 128–144) corresponding to the C-terminus of Pseudomonas aeruginosa pilin strain K has been studied by one- and two-dimensional nmr techniques. This synthetic immunogen has been found to exist as two distinct conformations in solution, which have been demonstrated to arise as a result of the isomerization of the I138-P139 amide bond. The two isomers occur in the ratio of 3 : 1 trans to cis at 5°C. Sequential assignments for both forms have been accomplished through the use of nuclear Overhauser enhancement spectroscopy (NOESY) spectra and most side-chain resonances have been assigned using a combination of correlated spectroscopy, total correlated spectroscopy, and NOESY spectra. The presence of the cis isomer, which is considerably more predominant in the oxidized peptide, was confirmed by the observation of the characteristic NOEs between P139 and the preceding residue. Further corroboration was given by the disappearance of the cis resonances in the spectrum of the P139A analogue of PAK 128–144. From observation of the differences in the chemical shifts and amide proton temperature coefficients of the two isomers, it is apparent that the two forms differ markedly in their solution conformation. The biological implications of the isomerization are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Molecular dynamics of the cyclic dipeptides cyclo(Gly-L -Pro), cyclo-(L-Pro-L -Pro), and cyclo(L-Pro-D-Pro) and the linear dipeptides L-Pro-Gly and cis and trans Gly-L -Pro were studied in neutral aqueous solution by 13C nuclear magnetic resonance. Spinlattice relaxation times (T1) were determined for each individual carbon atom. The correlation times, τ, were derived from a semiquantitative analysis of the T1 data. The correlation times of the proline ring carbons, β, γ, and δ suggest that the cyclic dipeptides have more restriction of conformational freedom in the proline ring than the linear dipeptides. This effect is most pronounced on the γ carbon.  相似文献   

12.
Conformational analyses of cyclic tetrapeptides consisting of alternating cis and trans peptide units have been made using contact criteria and energy calculations. This study has been restricted to those structures having a symmetry element in the backbone ring, such as a twofold axis (d) or a center of inversion (i). There are five main results. (1) There are two distinct types of conformations, which are stereochemically favorable corresponding to each of twofold and inversion-symmetrical structures, designated as d1, d2 (for twofold symmetrical) and i1, i2 (for inversion-symmetrical). Among these, the i1 type has the lowest energy when glycyl residues occur at all four α-carbon atoms. (2) With the glycyl residue at all four α-carbon atoms, methyl substitution at the cis peptide nitrogen atoms is possible in all the four types, whereas the substitution at trans peptide nitrogen atoms is possible only for the i1 type. Thus only in the i1 type can all the nitrogen atoms be methylated simultaneously. The conformation of the molecule in the crystal structure of cyclotetrasarcosyl belongs to the i1 type. (3) When alanyl residues occur at all four α-carbon atoms, the possible symmetrical type is dependent on the enantiomorphic form and the actual sequence of the alanyl residues. (4) The methyl substitution at peptide nitrogen atoms for cyclic tetrapeptides having alanyl residues causes more stereochemical restriction in the allowed conformations than with glycyl residues. (5) The prolyl residue can be incorporated favorably at the cis-trans junction of both d and i types of structures. The results of the present study are compared with the data on cyclic tetrapeptides available from the crystal structure and nmr studies. The results show an overall agreement both regarding the type of symmetry and the conformational parameters.  相似文献   

13.
Both cis- and trans-platins are known to form intra- and interstrand cross-linking with DNA. Since the nature and strength of binding is different, it makes their efficacy as anti-tumour drug different. In the present communication, we report theoretical analysis by using an amended Zimm and Bragg theory, to explain the melting behaviour and heat capacity of DNA with and without platin binding. The sharpness of transition has been examined in terms of half width and sensitivity parameter (deltaH/sigma). The experimental measurements of Pilch et al (J Mol Biol 2000, 296, 803) and Ctirad and Brabec (J Biol Chem 2001, 276, 9655) have been used.  相似文献   

14.
Conformational analysis of two pairs of synthetic cyclodipeptides formed by interaction of both side chain functional groups ( , and ) and of the main and side chains ( , and ) was achieved by the method of molecular mechanics. The energetically optimal conformational states of the molecules under study were determined. It was shown that the conformational motility of cyclic system of the compounds under study depends on the relative arrangement of the amide groups and the number of atoms in the cycle.  相似文献   

15.
A new method for peptidyl prolyl cis/trans isomerization prediction based on the theory of support vector machines (SVM) was introduced. The SVM represents a new approach to supervised pattern classification and has been successfully applied to a wide range of pattern recognition problems. In this study, six training datasets consisting of different length local sequence respectively were used. The polynomial kernel functions with different parameter d were chosen. The test for the independent testing dataset and the jackknife test were both carried out. When the local sequence length was 20-residue and the parameter d = 8, the SVM method archived the best performance with the correct rate for the cis and trans forms reaching 70.4 and 69.7% for the independent testing dataset, 76.7 and 76.6% for the jackknife test, respectively. Matthew's correlation coefficients for the jackknife test could reach about 0.5. The results obtained through this study indicated that the SVM method would become a powerful tool for predicting peptidyl prolyl cis/trans isomerization.  相似文献   

16.
The interplay between metal binding, carbohydrate binding activity, stability and structure of the lectin from Pterocarpus angolensis was investigated. Removal of the metals leads to a more flexible form of the protein with significantly less conformational stability. Crystal structures of this metal-free form show significant structural rearrangements, although some structural features that allow the binding of sugars are retained. We propose that substitution of an asparagine residue at the start of the C-terminal beta-strand of the legume lectin monomer hinders the trans-isomerization of the cis-peptide bond upon demetallization and constitutes an intramolecular switch governing the isomer state of the non-proline bond and ultimately the lectin phenotype.  相似文献   

17.
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that catalyse protein folding both in vitro and in vivo. We isolated a peptidyl-prolyl cis/trans isomerase (PPIase) which is specifically associated with the 50S subunit of the Escherichia coli ribosome. This association was abolished by adding at least 1.5 M LiCl. Sequencing the N-terminal amino acids in addition to three proteolytic fragments totalling 62 amino acids revealed that this PPIase is identical to the E.coli trigger factor. A comparison of the amino acid sequence of trigger factor with those of other PPIase families shows little similarities, suggesting that trigger factor may represent an additional family of PPIases. Trigger factor was purified to homogeneity on a preparative scale from E.coli and its enzymatic properties were studied. In its activity towards oligopeptide substrates, the trigger factor resembles the FK506-binding proteins (FKBPs). Additionally, the pattern of subsite specificities with respect to the amino acid preceding proline in Suc-Ala-Xaa-Pro-Phe-4-nitroanilides is reminiscent of FKBPs. However, the PPIase activity of the trigger factor was not inhibited by either FK506 or by cyclosporin A at concentrations up to 100 microM. In vitro, the trigger factor catalysed the proline-limited refolding of a variant of RNase T1 much better than all other PPIases that have been examined so far.  相似文献   

18.
Peptidyl-prolyl cis/trans isomerases (PPIases) play a pivotal role in catalyzing the correct folding of many prokaryotic and eukaryotic proteins that are implicated in a variety of biological functions, ranging from cell cycle regulation to bacterial infection. The nif accessory protein NifM, which is essential for the biogenesis of a functional NifH component of nitrogenase, is a PPIase. To understand the nature of the molecular signature that defines the NifM dependence of NifH, we screened a library of nifH mutants in the nitrogen-fixing bacterium Azotobacter vinelandii for mutants that acquired NifM independence. Here, we report that NifH can acquire NifM independence when the conserved Pro258 located in the C-terminal region of NifH, which wraps around the other subunit in the NifH dimer, is replaced by serine.  相似文献   

19.
Potent, cyclic hexapeptide analogues of somatostatin are generally believed to adopt some common secondary structural features: a II′ β turn at one end of the cycle, and a type VI turn with a cis amide bond at the other. A proposed cis amide surrogate, the 1,5-disubstituted tetrazole, has been placed into a cyclic hexapeptide analog of somatostatin in order to constrain the putative cis amide bond. The final cyclization was done by either chemical or enzymatic means. The product, cyclo(Ala6-Tyr7-D -Trp8-Lys9-Val10-Phe11-Ψ[CN4]), was found to have 83% of the activity of somatostatin. Solution nmr analysis in DMSO/water revealed that the backbone as well as side chain χ1 and χ2 were well ordered. Relaxation matrix methods were used to extract distance restraints from the nuclear Overhauser effect spectroscopy data set, and these were used in a systematic search of torsional space to identify structures consistent with the nmr data. Restrained minimizations of these structures using a number of different force fields produced structures having the expected βII′ turn at D -Trp8-Lys9 and αβVIa turn in the Phe11-Ψ[CN4]-Ala6 portion of the molecule. The similarity of the minimized structures to those previously reported for cyclic hexapeptide analogues of somatostatin confirms the similarity of the tetrazole geometry to that of the cis amide in solution. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号