首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fever and anapyrexia are the most studied thermoregulatory responses. They are defined as a body temperature (T(b)) increase and decrease, respectively, occurring because of a shift in the set point (SP) and characterized by active defense of the new T(b). Although models of T(b) control with a single SP (whether obvious or hidden) have been criticized, the SP-based definitions have remained unchallenged. In this article, the SP-based definitions of fever and anapyrexia were subjected to two tests. In test 1, they were compared with experimental data on changes in thresholds for activation of different thermoeffectors. Changes in thresholds were found compatible with an SP increase in some (but not all) cases of fever. In all cases of what is called anapyrexia, its mechanism (dissociation of thresholds of different effectors) was found incompatible with a decrease in a single SP. In test 2, experimental data on the dependence of T(b) on ambient temperature (T(a)) were analyzed. It was found that the febrile level of T(b) is defended in some (but not all) cases. However, strong dependence on T(a) was found in all cases of anapyrexia, which agrees with threshold dissociation but not with a decrease of the SP. It is concluded that fever (as defined) has only limited experimental support, whereas anapyrexia (as defined) does not exist. Two solutions are offered. A palliative is to accept that SP-based terms (anapyrexia, cryexia, regulated hypothermia, and such) are inadequate and should be abandoned. A radical solution is to transform all definitions based on comparing T(b) with the SP into definitions based on balancing active and passive processes of T(b) control.  相似文献   

2.
Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia.  相似文献   

3.
Hypoxia evokes a regulated decrease in body temperature, a response that has been termed anapyrexia, but the mechanisms involved are poorly understood. Therefore, the present study was undertaken to test the hypothesis that hypoxia-induced anapyrexia results from the activation of cAMP- and cGMP-dependent pathways in the preoptic region (PO). Adult male Wistar rats weighing 230-260 g were used. Body temperature was monitored by biotelemetry, and the levels of cAMP and cGMP were determined in the anteroventral third ventricular region (AV3V), where the PO is located. Using immunohistochemistry, we observed that the PO contains a high density of cAMP- and cGMP-containing cells. Interestingly, hypoxia exposure raised the levels of cAMP and cGMP in the AV3V. Intra-PO microinjection of Rp-cAMPS, an inhibitor of cAMP-dependent protein kinase, attenuated hypoxia-induced anapyrexia. Similarly, intra-PO microinjection of the mixed beta-adrenoceptor/serotonin (5-HT(1A)) receptor antagonist propranolol also impaired the drop in body temperature in response to hypoxia. The reduction in body temperature evoked by intra-PO serotonin, but not epinephrine, was blocked by Rp-cAMPS, indicating the involvement of a preoptic serotonin-cAMP pathway in the development of anapyrexia. Moreover, microinjection of N(G)-monomethyl-l-arginine, an inhibitor of nitric oxide (NO) synthesis, or Rp-cGMPS, an inhibitor of cGMP-dependent protein kinase, into the PO also attenuated hypoxia-induced anapyrexia. In conclusion, the present study supports that hypoxia-induced anapyrexia results from the activation of the serotonin-cAMP and NO-cGMP pathways in the PO.  相似文献   

4.
Hypoxia induces a regulated decrease in body temperature (Tb; anapyrexia) in organisms ranging from protozoans to mammals, but very little is known about the mechanisms involved. Several candidates have been suggested to mediate hypoxia-induced anapyrexia, among them lactate, which is a classical compansion of hypoxic stress in vertebrates. The present study was designed to assess the central thermoregulatory effects of lactate in Bujo paracnemis. Toads equipped with a temperature probe were tested over a thermal gradient (10-40 degrees C). Lactate injected systemically (4.0 mmol kg-1) caused a significant reduction of Tb from 24.6 +/- 2.1 to 17.4 +/- 3.9 degrees C. To assess the role of central thermoregulatory mechanisms, a lower dose (0.4 mmol kg-1) of lactate was injected into the fourth cerebral ventricle or systemically. Intracerebroventricular injection of lactate caused a similar decrease in Tb, whereas systemic injection caused no change. The data indicate that lactate may play a role in hypoxia-induced anapyrexia in central rather than peripheral sites.  相似文献   

5.
The neural process by which it is generally supposed that the stability of the body temperature of mammals is achieved has long been sought, but it remains unresolved. One hypothesis is that, as with many engineered physical systems, there is a stable reference signal with which a signal representative of body temperature is compared. Another hypothesis is that the differing coefficients of two signals that vary with temperature changes provide the set-level determinant. These could be the activities of the "cold" and "warm" sensors in response to temperature changes. Reciprocal crossing inhibition between the cold sensor to heat production effector pathways and the warm sensor to heat loss effector pathways through the central nervous system is a likely occurrence, and it could create the null-point temperature at which neither heat production nor heat loss effectors are active. This null point would be, seemingly, the set point at which body temperature is regulated. Neither hypothesis has been validated unequivocally. Students should be aware of this uncertainty about the physiological basis of homeothermy and, indeed, of homeostasis more generally. Perhaps we should be looking for a general principle that underlies the many physical and chemical stabilities of the internal environment, rather than considering them as quite separate accomplishments.  相似文献   

6.
Anapyrexia (a regulated decrease in body temperature) is a response to hypoxia that occurs in organisms ranging from protozoans to mammals, but very little is known about the mechanisms involved. Recently, it has been shown that the NO pathway plays a major role in hypoxia-induced anapyrexia. However, very little is known about which of the three different nitric oxide synthase isoforms (neuronal, endothelial, or inducible) is involved. The present study was designed to test the hypothesis that neuronal nitric oxide synthase (nNOS) plays a role in hypoxia-induced anapyrexia. Body core temperature (T(c)) of awake, unrestrained rats was measured continuously using biotelemetry. Rats were submitted to hypoxia, 7-nitroindazole (7-NI; a selective nNOS inhibitor) injection, or both treatments together. Control animals received vehicle injections of the same volume. We observed a significant (P < 0.05) reduction in T(c) of approximately 2.8 degrees C after hypoxia (7% inspired O(2)), whereas intraperitoneal injection of 7-NI at 25 mg/kg caused no significant change in T(c). 7-NI at 30 mg/kg elicited a reduction in T(c) and was abandoned in further experiments. When the two treatments were combined (25 mg/kg of 7-NI and 7% inspired O(2)), we observed a significant attenuation of hypoxia-induced anapyrexia. The data indicate that nNOS plays a role in hypoxia-induced anapyrexia.  相似文献   

7.
A Paramecium cell has a stereotypically patterned surface, with regularly arranged cilia, dense-core secretory vesicles and subplasmalemmal calcium stores. Less strikingly, there is also a patterning of molecules; for instance, some ion channels are restricted to certain regions of the cell surface. This design may explain very effective and selective responses, such as that to Ca(2+) upon stimulation. It enables the cell to respond to a Ca(2+) signal precisely secretion (exocytosis) or by changing its ciliary activity. These responses depend on the location and/or type of signal, even though these two target structures co-exist side-by-side, and normally only limited overlap occurs between the different functions. Furthermore, the patterning of exocytotic sites and the possibility of synchronous exocytosis induction in the sub-second time range have considerably facilitated analyses, and thus led to new concepts of exocytotic membrane fusion. It has been possible to dissect complicated events like overlapping Ca(2+) fluxes produced from external sources and from internal stores. Since molecular genetic approaches have become available for Paramecium, many different gene products have been identified only some of which are known from "higher" eukaryotes. Although a variety of basic cellular functions are briefly addressed to demonstrate the uniqueness of this unicellular organism, this article focuses on exocytosis regulation.  相似文献   

8.
《Journal of thermal biology》2001,26(4-5):339-343
(1) Centrally acting carbon monoxide (CO) seems to play thermoregulatory actions, but no report exists about its role in hypoxia-induced anapyrexia. (2) CO arises from the catabolism of heme by heme oxygenase (HO), an enzyme that is overexpressed during hypoxia. Thus, we tested the hypothesis that the central HO–CO pathway modulates hypoxia-induced anapyrexia by means of intracerebroventricular injection of the HO inhibitor ZnDPBG. (3) Core temperature (TC) of awake rats was determined by biotelemetry. ZnDPBG did not alter basal Tc, but it exacerbated hypoxia-induced anapyrexia, indicating that the central HO–CO pathway is a modulator of hypoxia-induced anapyrexia, probably preventing excessive decreases in Tc.  相似文献   

9.
A simulation of ventilatory responses to infused and inhaled CO2 at controlled cardiac output and high and low levels of neural excitation mimics comparable experiments in animals. The model suggests that at low levels of endogenous and exogenous CO2 load the alert quiescent animal will show hyperpnea to both test states associated with hypercapnia. The nonalert quiescent animal simulated will show an isocapnic response to endogenous load and hypercapnic response to exogenous load. The explanation of this behavior lies in the model formulation, which allows the neural signal from metabolically active sources to drive the proportional component of the controller below an operating level established by its set point. By this reasoning the excited but metabolically inactive animal should be paradoxically less sensitive to small changes in CO2, whether exogenous or endogenous, than the quiescent animal. The model demonstrates further that a neural "exercise" signal in proportion to venous return better simulates observations in which CO2 load and venous return are dissociated than one in which the neural signal is computed from metabolism. The use of delta V/delta P slopes as estimates of sensitivity go awry in experiment and simulation when blood flow, CO2 level, and neural excitatory state are dissociated. This is particularly true when the organism is operating at and below the hypothesized set point.  相似文献   

10.
Experiments on rats have shown that the difference between depth and surface temperatures delta t of the normal organism in usual and variable external temperature conditions varies with in determined limits. The determination of delta t is proposed as a non-invasive test for the diagnosis of diabetes mellitus.  相似文献   

11.
Hypoxia induces a regulated decrease in body temperature (Tb; anapyrexia) in organisms ranging from protozoans to mammals, but very little is known about the mechanisms involved. Several candidates have been suggested to mediate hypoxia-induced anapyrexia, among them lactate, which is a classical companion of hypoxic stress in vertebrates. The present study was designed to assess the central thermoregulatory effects of lactate in Bujo paracnemis. Toads equipped with a temperature probe were tested over a thermal gradient (10–40°C). Lactate injected systemically (4.0 mmol kg−1) caused a significant reduction of Tb from 24.6±2.1 to 17.4±3.9°C. To assess the role of central thermoregulatory mechanisms, a lower dose (0.4 mmol kg−1) of lactate was injected into the fourth cerebral ventricle or systemically. Intracerebroventricular injection of lactate caused a similar decrease in Tb, whereas systemic injection caused no change. The data indicate that lactate may play a role in hypoxia-induced anapyrexia in central rather than peripheral sites.  相似文献   

12.
The desert locust Schistocerca gregaria behaviorally thermoregulates in order to try and maintain a favoured "set point" body temperature. Locusts infected with the deuteromycete fungal pathogen Metarhizium anisopliae var acridumchoose a significantly elevated temperature. This "behavioral fever" greatly delays the progress of mycosis. We have confirmed this phenomenon and shown that desert locusts also fever when infected with the bacterial pathogen Serratia marcescens. Elevation in the prefered environmental temperature occurs also upon injection with laminarin and lipopolysaccharide (microbial cell wall components). Since such treatments also stimulate the immune system it would appear that "behavioral fever" is probably a feature of the immune response. The eicosanoid biosynthesis inhibitor dexamethasone prevented laminarin invoked fever. This effect was reversable by arachidonic acid. Therefore in common with the febrile response in mammals behavioral fever in insects may be mediated locally by circulating eicosanoids.  相似文献   

13.
It is shown in this analysis that the distribution of organism development times for constant and variable temperatures can be described based upon one simple assumption. This assumption is that the concentration of enzymes which are rate controlling for development are symmetrically distributed about some genetically determined mean concentration. It then follows mathematically that the skew in the distribution in development times, observed by Stinner, Butler, Bacheler & Tuttle (1975) and others, results naturally from the transformation from development rates to emergence times. The distribution model is shown to agree with observed data for (i) boll weevil, Anthonomus grandis Boheman, and (ii) cotton fleahopper, Pseudatomoscelis seriatus Reuter, reared under both constant and variable temperature regimes. The resulting model enables predictions of the distribution of emergence times for organisms reared under any set of variable temperature field conditions.  相似文献   

14.
While summarizing the current understanding of how body temperature (T(b)) is regulated, this review discusses the recent progress in the following areas: central and peripheral thermosensitivity and temperature-activated transient receptor potential (TRP) channels; afferent neuronal pathways from peripheral thermosensors; and efferent thermoeffector pathways. It is proposed that activation of temperature-sensitive TRP channels is a mechanism of peripheral thermosensitivity. Special attention is paid to the functional architecture of the thermoregulatory system. The notion that deep T(b) is regulated by a unified system with a single controller is rejected. It is proposed that T(b) is regulated by independent thermoeffector loops, each having its own afferent and efferent branches. The activity of each thermoeffector is triggered by a unique combination of shell and core T(b)s. Temperature-dependent phase transitions in thermosensory neurons cause sequential activation of all neurons of the corresponding thermoeffector loop and eventually a thermoeffector response. No computation of an integrated T(b) or its comparison with an obvious or hidden set point of a unified system is necessary. Coordination between thermoeffectors is achieved through their common controlled variable, T(b). The described model incorporates Kobayashi's views, but Kobayashi's proposal to eliminate the term sensor is rejected. A case against the term set point is also made. Because this term is historically associated with a unified control system, it is more misleading than informative. The term balance point is proposed to designate the regulated level of T(b) and to attract attention to the multiple feedback, feedforward, and open-loop components that contribute to thermal balance.  相似文献   

15.
16.
Here we present a concept that considers organism aging as an additional facultative function promoting evolution, but counterproductive for an individual. We hypothesize that aging can be inhibited or even arrested when full mobilization of all resources is needed for the survival of an individual. We believe that the organism makes such a decision based on the analysis of signals of special receptors that monitor a number of parameters of the internal and external environment. The amount of available food is one of these parameters. Food restriction is perceived by the organism as a signal of coming starvation; in response to it, the organism inhibits its counterproductive programs, in particular, aging. We hypothesize that the level of protein obtained with food is estimated based on blood concentration of one of the essential amino acids (methionine), of carbohydrates — via glucose level, and fats — based on the level of one of the free fatty acids. When the amount of available food is sufficient, these receptors transmit the signal allowing aging. In case of lack of food, this signal is cancelled, and as a result aging is inhibited, i.e. age-related weakening of physiological functions is inhibited, and lifespan increases (the well-known geroprotective effect of partial food restriction). In Caenorhabditis elegans, lowering of the ambient temperature has a similar effect. This geroprotective effect is removed by the knockout of one of the cold receptors, and replacement of the C. elegans receptor by a similar human receptor restores the ability of low temperature to increase the lifespan of the nematode. A chain of events linking the receptor with the aging mechanism has been discovered in mice — for one of the pain receptors in neurons, the nerve endings of which entwine pancreas β-cells. Age-related activation of these receptors inhibits the work of insulin genes in β-cells. Problems with insulin secretion lead to oxidative stress, chronic inflammation, and type II diabetes, which can be regarded as one of the forms of senile phenoptosis. In conclusion, we consider the role of some psychological factors in the regulation of the aging program.  相似文献   

17.
The set point has been used to define the regulated level of body temperature, suggesting that displacements of core temperature from the set point initiate heat production (HP) and heat loss (HL) responses. Human and animal experiments have demonstrated that the responses of sweating and shivering do not coincide at a set point but rather establish a thermoeffector threshold zone. Neurophysiological studies have demonstrated that the sensor-to-effector pathways for HP and HL overlap and, in fact, mutually inhibit each other. This reciprocal inhibition theory, presumably reflecting the manner in which thermal factors contribute to homeothermy in humans, does not incorporate the effect of nonthermal factors on temperature regulation. The present review examines the actions of these nonthermal factors within the context of neuronal models of temperature regulation, suggesting that examination of these factors may provide further insights into the nature of temperature regulation. It is concluded that, although there is no evidence to doubt the existence of the HP and HL pathways reciprocally inhibiting one another, it appears that such a mechanism is of little consequence when comparing the effects of nonthermal factors on the thermoregulatory system, since most of these factors seem to exert their influence in the region after the reciprocal cross-inhibition. At any given moment, both thermal and several nonthermal factors will be acting on the thermoregulatory system. It may, therefore, not be appropriate to dismiss the contribution of either when discussing the regulation of body temperature in humans.  相似文献   

18.
Biological regulation is what allows an organism to handle the effects of a perturbation, modulating its own constitutive dynamics in response to particular changes in internal and external conditions. With the central focus of analysis on the case of minimal living systems, we argue that regulation consists in a specific form of second-order control, exerted over the core (constitutive) regime of production and maintenance of the components that actually put together the organism. The main argument is that regulation requires a distinctive architecture of functional relationships, and specifically the action of a dedicated subsystem whose activity is dynamically decoupled from that of the constitutive regime. We distinguish between two major ways in which control mechanisms contribute to the maintenance of a biological organisation in response to internal and external perturbations: dynamic stability and regulation. Based on this distinction an explicit definition and a set of organisational requirements for regulation are provided, and thoroughly illustrated through the examples of bacterial chemotaxis and the lac-operon. The analysis enables us to mark out the differences between regulation and closely related concepts such as feedback, robustness and homeostasis.  相似文献   

19.
Melkikh AV 《Biofizika》2002,47(6):1134-1139
The process of selecting new information by the organism ("learning") was studied. To take a decision, key patterns have to be set a priori, and so knowledge accumulation (learning) based on pattern recognition is impossible. It was shown that the only physical process that, takes place during the emergence of an external signal is the triggering of a priori programmes. An equivalent biophysical scheme of pattern recognition and taking the decisions by the organism was developed in which a signal received by the receptor leads to the synthesis of one of possible catalysts. The catalyst starts up the corresponding thermodynamic process. The information contained in the organism does not change during this process.  相似文献   

20.
Teeth. Where and how to make them   总被引:26,自引:0,他引:26  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号